
10/11/2009 www.cac.cornell.edu 1

Stashing Your Data
Data Access, Formats and Bases

Nate Woody

Issues beyond the scope of this talk…

• Provenance
– The record of the origin or source of data
– The history of the ownership or location of data
– Purpose: to confirm the time and place of, and perhaps the person

responsible for, the creation, production or discovery of the data
• Curation

– Collecting, cataloging, organizing, and preserving data
• Ontology

– Assigning types and properties to data objects
– Determining relationships among data objects
– Associating concepts and meanings with data (semantics)

• Portable data formats can and do address some of these issues…

10/11/2009 www.cac.cornell.edu 2

How will you store your data?

• Raw binary is compact but not portable
– “Unformatted,” machine-specific representation
– Byte-order issues: big endian (IBM) vs. little endian (Intel)

• Formatted text is portable but not compact
– Need to know all the details of formatting just to read the data
– 1 byte of ASCII text stores only a single decimal digit (~3 bits)
– Most of the fat can be knocked out by compression (gzip, bzip, etc.)
– However, compression is impractical and slow for large files

• Need to consider how data will ultimately be used
– Are you trying to ensure future portability?
– Will your favored analysis tools be able to read the data?
– What storage constraints are there?

10/11/2009 www.cac.cornell.edu 3

Portable data formats: the HDF5 technology suite

• Versatile data model that can represent very complex data objects
and a wide variety of metadata

• Completely portable file format with no limit on the number or size of
data objects in the collection

• Free and open software library that runs on a range of platforms,
from laptops to massively parallel systems, and implements a high-
level API with C, C++, Fortran 90, and Java interfaces

• Rich set of integrated performance features that allow for
optimizations of access time and storage space

• Tools and applications for managing, manipulating, viewing, and
analyzing the data in the collection

Source: www.hdfgroup.org/hdf5

10/11/2009 www.cac.cornell.edu 4

Features lending flexibility to HDF5

• Datatype definitions include information such as byte order (endian)
and fully describe how the data is stored, insuring portability

• Virtual file layer provides extremely flexible storage and transfer
capabilities: Standard (Posix), Parallel, and Network I/O file drivers

• Compression and chunking are employed to improve access,
management, and storage efficiency

• External raw storage allows raw data to be shared among HDF5
files and/or applications

• Datatype transformation can be performed during I/O operations
• Complex subsetting reduces transferred data volume and improves

access speed during I/O operations
Source: www.hdfgroup.org/hdf5

10/11/2009 www.cac.cornell.edu 5

Portable data formats: netCDF

• NetCDF (network Common Data Form) is a set of software libraries
and machine-independent data formats that support the creation,
access, and sharing of array-oriented scientific data

• The free and open netCDF distribution contains the C/C++/F77/F90
libraries, plus the netCDF utilities ncgen and ncdump

• NetCDF for Java is also available (standalone)
• Many other interfaces to netCDF data exist: MATLAB, Objective-C,

Perl, Python, R, Ruby, Tcl/Tk
• There is a well-developed suite of software tools for manipulating or

displaying netCDF data

Source: http://www.unidata.ucar.edu/software/netcdf

10/11/2009 www.cac.cornell.edu 6

Properties of NetCDF data

• Self-Describing. A netCDF file includes information about the data it
contains

• Portable. A netCDF file can be accessed by computers with
different ways of storing integers, characters, and floats

• Direct-access. A small subset of a large dataset may be accessed
without first reading through all the preceding data

• Appendable. Data may be appended to a properly structured
netCDF file without copying the dataset or redefining its structure

• Shareable. One writer and multiple readers may simultaneously
access the same netCDF file

• Archivable. NetCDF will always be backwards compatible
Source: http://www.unidata.ucar.edu/software/netcdf

10/11/2009 www.cac.cornell.edu 7

Advantages of netCDF

• NetCDF has been around longer, especially in the climate, weather,
atmosphere, and ocean research communities (source is UCAR)

• NetCDF has nice associated tools, especially for geo-gridded data
– Panoply (http://www.giss.nasa.gov/tools/panoply/) focuses on the

presentation of geo-gridded data. It is written in Java and is platform
independent. The feature set overlaps with ncBrowse and ncview.

– Ferret (http://ferret.wrc.noaa.gov/Ferret/) offers a Mathematica-like
approach to analysis. New variables and expressions may be defined
interactively; calculations may be applied over arbitrarily shaped
regions; geophysical formatting is built in.

– Parallel-NetCDF (http://trac.mcs.anl.gov/projects/parallel-netcdf/) is
built upon MPI-IO to distribute file reads and writes efficiently among
multiple processors.

10/11/2009 www.cac.cornell.edu 8

http://www.giss.nasa.gov/tools/panoply/
http://ferret.wrc.noaa.gov/Ferret/
http://trac.mcs.anl.gov/projects/parallel-netcdf/

Silo Files – Visualization

• Silo is actually a library which implements an API for writing
scientific data to binary disk files.

• Primary file format for Visit.
• Supports Point meshes, structured meshes, curves, etc.
• Silo uses an I/O driver (typically HDF, but also PDB and netcdf) to

actually read and write the files.
• Fortran, C, and Python interfaces are provided with the library and

builds easily on most POSIX systems
– An independent python interface called Pylo

(http://mathema.tician.de/software/pylo) which offers some
enhancements for easy use.

10/11/2009 www.cac.cornell.edu 9

http://mathema.tician.de/software/pylo

Silo - Using

• Silo is a serial I/O library but can be effectively used in what is called
“Poor Mans Parallel I/O”.
– Silo files can contain namespaces (directories) with a single file and a

“multi-block” object can be instantiated which can span multipe files.
– Applications then divide processors into groups and each group writes a

separate file.
– Each processor with a group writes to it’s own group (serially with-in the

group, parallel across groups), a single processor can then be
responsible for writing multi-block to tie the various files together.

– Silo hides all of this from you with a set of functions to hide the
operations.

10/11/2009 www.cac.cornell.edu 10

Silo – Writing a mesh file

10/11/2009 www.cac.cornell.edu 11

Path from serial to parallel I/O – part 1

10/11/2009 www.cac.cornell.edu 12

P0 P1 P2 P3

I/O lib

File system

• P0 may become bottleneck
• System memory may be

exceeded on P0

Path from serial to parallel I/O – part 2

10/11/2009 www.cac.cornell.edu 13

P0 P1 P2 P3

I/O lib

File system

• Possible to achieve good
performance

• May require post-processing
• More work for applications,

programmers
I/O lib I/O lib I/O lib

Path from serial to parallel I/O – part 3

10/11/2009 www.cac.cornell.edu 14

P0 P1 P2 P3

Parallel I/O lib (based on MPI-IO)

Parallel file system

• Main point: either HDF5 or
netCDF can take the place of
the parallel I/O library

• Variant: only P1 and P2 act as
parallel writers; they gather
data from P0 and P3
respectively (chunking)

04/06/09 www.cac.cornell.edu

XUFS

• sshfs on steroids, and backwards
[ajd27@v4linuxlogin1 ~]$ xufs/bin/ussh tg123123@ranger.tacc.utexas.edu
Password:
login3% pwd
/share/home/00933/tg459569/xufs-rhome
login3% ls -la
total 15340
drwx------ 15 tg459569 G-80907 4096 Mar 27 15:14 .
drwxr--r-- 23 tg459569 G-80907 4096 Mar 27 15:14 ..
drwxr-xr-x 2 tg459569 G-80907 4096 Mar 27 15:14 Desktop
drwxr-xr-x 2 tg459569 G-80907 4096 Mar 27 15:14 VTune
drwxrwxrwx 2 tg459569 G-80907 4096 Mar 27 15:14 WINDOWS
drwxrwxrwx 2 tg459569 G-80907 4096 Mar 27 15:14 bin
drwxrwxrwx 20 tg459569 G-80907 4096 Mar 27 15:14 dev

04/06/09 www.cac.cornell.edu

XUFS Appropriateness

• Similar to GPFS-WAN, sshfs, and many others, but...
• You already have a fair amount of disk space on your home

machine.
• You don't want two copies of your code floating around.
• No need for a lightning-fast synchronization when writing.
• Sharing among accounts at TG institution is rare.
• With striped gridftp underneath, there is no loss of efficiency.

What’s a database

• Everyone is familiar with the concept of a database, but there are a
lot of variants out there, don’t be confused.

• Enterprise class relational databases:
– Oracle, MySQL, PostGreSQL, SQLServer

• Small light relational databases:
– SQLite, SmallSQL

• Special Purpose Databases
– Apache Derby, GadFly, Cayuga

• Object Databases (layered on other databases)
• Data warehouse
• Federated Databases

10/11/2009 www.cac.cornell.edu 17

A structured collection of data

Why would you use databases

• Data integrity checks
– Manage row duplication
– Enforce data ranges and types

• Forces you to think about the data you’re going to store up front
– What are the fields of the data?
– Can some values be NULL?

• Lots of provided features
– SQL connectors for most any language is available.
– Advanced query capabilities are provided for you.
– Thread safety/Transactional operations

• Highly extensible as your application scales up
– A naïve flat file search won’t scale

10/11/2009 www.cac.cornell.edu 18

Let’s represent some data

• I recently needed to write a facebook application for arXiv.org, which
allows people to show their arXiv papers on their profile page.

• We need to store in a web application the information about papers
that people have authored that can be queried to extract the papers
for a particular user.

• So we have a couple of objects:
– Authors (facebook id, arxiv info, etc)
– Papers (title, abstract, journal reference, etc)

• Let’s look at some representations of this data.

10/11/2009 www.cac.cornell.edu 19

Table based flat file

• The simplest thing is to create a table that contains a row for every unique
paper an author has written.

• Search the table for all rows that have the appropriate ID

• Problems:
– Duplicate rows for every author of a paper (Reading is neat).
– Linear scan of file for matching facebook ID.

• Benefits:
– Easy to add new entries (depending on sorting)
– Write the read/write functions while sleeping.

10/11/2009 www.cac.cornell.edu 20

Facebook ID Paper ID Paper Title Paper Authors
2341234 http://arxiv.org/abs/1234 Particle Pleasantry CH Foo, BC Lars
2341234 http://arxiv.org/abs/3234 Reading is neat CH Foo, RG Fields

1234123 http://arxiv.org/abs/4321 Science in Teaching
DS Henry, RG

Fields
1234123 http://arxiv.org/abs/3234 Reading is neat CH Foo, RG FIelds

http://arxiv.org/abs/1234
http://arxiv.org/abs/3234
http://arxiv.org/abs/4321
http://arxiv.org/abs/3234

Relational Database

• This particular instance is well-suited for a relational database where we define two
tables and a link between them.

• Since we have more papers then Users/Authors, we create a table that contains all
paper information and a separate table that contains an entry for every authored
paper.

• paperID in Users is called a Foreign Key which
just means it points to a row in another table.

• PaperID in Papers is called a Primary Key which
means it uniquely identifies a row.

• Benefits:
– Fast location of papers from author
– Easy to add fields, papers and authors

• Problems:
– Database management

10/11/2009 www.cac.cornell.edu 21

More relationships

• We actually have much more fined-grained representations we would like to
make. Authored is just one example.

• Recommended – Papers I read and wrote a review for.
• Reading – Papers I’m currently reading/interested in.
• Join Table – table that contains links to other tables and perhaps other

information about the relationship. This contains Foreign Keys and possible
other fields.

10/11/2009 www.cac.cornell.edu 22

Relational Data

• Relational databases are based on the relational model.

• Practically this means that data can be expressed by a set of binary
relationships.
– This is commonly seen in scientific data around metadata that would

need to be replicated for every row of data. This replication get’s worse
when the metadata is hierarchical.

10/11/2009 www.cac.cornell.edu 23

How do you decide?

• I tend to use flat files when
– Small amounts of data
– Static dumping of data

• I tend to use a database when
– Constantly updating/evolving data
– Where searching/querying data is important/complex
– When row based tables stink (relationships, etc)
– Threading/transactions

• Other factors to consider
– Size of data (cost/expertise)
– What are the expectations on sharing data

10/11/2009 www.cac.cornell.edu 24

Talking to a database

• Talking to a database requires a software connector that allows you to
speak SQL to the database.

• SQL – Structured Query Language
Computer language designed for creation, managament, modification

and retrieval of data from a database. Essentially all databases speak SQL,
though many also provide some form extensions (which are less standard).

– Using a database requires some basic knowledge of the SQL language.

• PL/SQL and SQL/PSM – Database extensions that provide stored
procedures in the database. This allows control-of-flow constructs to be
used and allows you to move some functionality into the database.

– This is the MOST abused function in database usage.

10/11/2009 www.cac.cornell.edu 25

SQL language - Select

• Using our simplest table design, we will go over some basic queries
that you would perform to introduce the language.

• First, retrieve the title of a specific paper:

• Retrieve an entire row:

• Retrieve a paper with a “Henry” author:

10/11/2009 www.cac.cornell.edu 26

SELECT * FROM Papers
WHERE PaperID = 200

SELECT Title FROM Papers
WHERE PaperID = 200

SELECT * FROM Papers
WHERE Authors LIKE ‘%Henry%’

SELECT article FROM Authored
WHERE Author = “UserID”

• Retrieve the list of articles authored
by a particular user.

• Now get the authored article ids

• Now get the papers

• Alternatively, use the JOIN keyword

SELECT UserID FROM Users
WHERE FacebookID = “someid”

SQL Language - Join

10/11/2009 www.cac.cornell.edu 27

SELECT paperID,Title FROM Papers WHERE PaperID IN (‘1234’,’4321’)

Select paperID, title from Papers
INNER JOIN Authored.Article=Papers.PaperID
Where (Authored.Author = “UserID”)

SQL Language Insert/Update

• SQL also allows the insertion of new rows into the database as well
as updated exisiting rows.

• Insert a new Paper for an existing Author

• Update the journal_ref

10/11/2009 www.cac.cornell.edu 28

INSERT INTO Papers (PaperID, Title, Authors)
Values(5678,’Really neat stuff’,’RG Fields’)

INSERT INTO Authored
Values(12345678,5678)

UPDATE Papers
SET Journal_ref=“someref”
WHERE PaperID=‘5678’

COMMIT

• Dropping rows from the table is just
like SELECTing, where rows are
selected using a WHERE clause.

• Many functions can be used to get
records retrieved in a way meaningful to what you’re doing.

SELECT PaperID,Authors FROM Papers
ORDER BY Published

SQL Language – Delete/Order

10/11/2009 www.cac.cornell.edu 29

DELETE FROM Authored
WHERE Article=‘1234’

SELECT PaperID,Authors FROM Papers
WHERE Journal_ref LIKE ‘Chimica%’
AND Published > somedate

Using SQL

• All languages out there have SQL connectors which are software
modules that provide a connection to the database and a cursor.

• Note: Many connectors have a special executeQuery function which
returns an iterable to retrieve rows (res->next())

10/11/2009 www.cac.cornell.edu 30

SQL Language

• Benefits:
– SQL is a relatively simple language that has a very gentle learning

curve
– Connectors from every language to every type of database is widely

available and all reasonable databases support SQL, making it a
ubiqutious choice.

– Lines of code can be drastically reduced by taking advantage of the
databases code for searching and retrieving objects from the database

• Problems:
– SQL will allow you to make amazingly inefficient queries that may not be

obvious why they are inefficient, you may need to play with a query to
optimize it.

– Yet another language to learn

10/11/2009 www.cac.cornell.edu 31

OR Mapping

• OR Mapping – When you just don’t have time for SQL
• Object-relational mapping (also ORM and O/R Mapping) converts

data between a database and an object-oriented programming
language.

• An ORM tool creates database tables from class definitions and so
let’s you create and use a database with standard object
programming paradigms.

• The ORM tool basically writes the SQL for you, which can be highly
beneficial in most cases, but the tools also allow you direct SQL
access in cases where optimized queries are needed.

10/11/2009 www.cac.cornell.edu 32

OR Mapping – Create script

• A script is usually used to
generate the database (so it
can be regenerated as needed)
and looks something like the
thing on the right.

10/11/2009 www.cac.cornell.edu 33

OR Mapping

• For an OR Mapper, we specify the structure of the data using classes
and member variables.

• Things like null-ability, default values, and foreign keys are specified in
a simpler fashion.

10/11/2009 www.cac.cornell.edu 34

Specify the primary key (otherwise
one will be generated).

This means varchar(128)

This field can be NULL

OR Mapping – programming

• The notation for dealing with an OR Mapped version is relatively simple but
has several important features:
– Transactions/sessions are managed by the mapper
– Type checking is enforced by the language rather than at runtime in

SQL.
– Changing data tables means just changing a class structure.

10/11/2009 www.cac.cornell.edu 35

Conclusions

• Databases are always the right solution.
– Well…

• Databases can be an effective way to improve your ability to share
and manage your data.

• Databases and database technologies are increasingly embedded
in a variety of systems and the technology stacks to support easy
use of these systems are increasingly omnipresent.

• Database languages and tools can help reduce the amount of code
you manage in your projects.

10/11/2009 www.cac.cornell.edu 36

	Stashing Your Data�Data Access, Formats and Bases
	Issues beyond the scope of this talk…
	How will you store your data?
	Portable data formats: the HDF5 technology suite
	Features lending flexibility to HDF5
	Portable data formats: netCDF
	Properties of NetCDF data
	Advantages of netCDF
	Silo Files – Visualization
	Silo - Using
	Silo – Writing a mesh file
	Path from serial to parallel I/O – part 1
	Path from serial to parallel I/O – part 2
	Path from serial to parallel I/O – part 3
	XUFS
	XUFS Appropriateness
	What’s a database
	Why would you use databases
	Let’s represent some data
	Table based flat file
	Relational Database
	More relationships
	Relational Data
	How do you decide?
	Talking to a database
	SQL language - Select
	SQL Language - Join
	SQL Language Insert/Update
	SQL Language – Delete/Order
	Using SQL
	SQL Language
	OR Mapping
	OR Mapping – Create script
	OR Mapping
	OR Mapping – programming
	Conclusions

