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What is Parallel Computing?

• Parallel computing: use of multiple processors or computers working 
together on a common task.
– Each processor works on its section of the problem or data
– Processors can exchange information

5/28/2009 www.cac.cornell.edu 2



Why Do Parallel Computing?

• Limits of single CPU computing
– performance
– available memory

• Parallel computing allows one to:
– solve problems that don’t fit on a single CPU
– solve problems that can’t be solved in a reasonable time

• We can solve…
– larger problems
– faster
– more cases
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Parallel Terminology (1 of 3)

• serial code is a single thread of execution working on a single data 
item at any one time

• parallel code has more than one thing happening at a time. This 
could be
– A single thread of execution operating on multiple data items 

simultaneously 
– Multiple threads of execution in a single executable 
– Multiple executables all working on the same problem 
– Any combination of the above 

• task is the name we use for an instance of an executable. Each task 
has its own virtual address space and may have multiple threads.
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Parallel Terminology

• node: a discrete unit of a computer system that typically runs its 
own instance of the operating system. 

• core: a processing unit on a computer chip that is able to support a
thread of execution; can refer either to a single core or to all of the 
cores on a particular chip. 

• cluster: a collection of machines or nodes that function in some 
way as a single resource. 

• scheduler: assigns nodes of a cluster to a user who submits a job
• grid: the software stack designed to handle the technical and social

challenges of sharing resources across networking and institutional 
boundaries. grid also applies to the groups that have reached 
agreements to share their resources.
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Parallel Terminology

• synchronization: the temporal coordination of parallel tasks. It 
involves waiting until two or more tasks reach a specified point (a 
sync point) before continuing any of the tasks. 

• parallel overhead: the amount of time required to coordinate 
parallel tasks, as opposed to doing useful work, including time to 
start and terminate tasks, communication, move data.

• granularity: a measure of the ratio of the amount of computation 
done in a parallel task to the amount of communication. 
– fine-grained (very little computation per communication-byte)
– coarse-grained (extensive computation per communication-byte). 
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Limits of Parallel Computing

• Theoretical Upper Limits
– Amdahl’s Law

• Practical Limits
– Load balancing
– Non-computational sections

• Other Considerations
– time to re-write code 
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Theoretical Upper Limits to Performance

• All parallel programs contain:
– parallel sections (we hope!)
– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness

• Amdahl’s Law states this formally
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Amdahl’s Law

• Amdahl’s Law places a strict limit on the speedup that 
can be realized by using multiple processors.

– Effect of multiple processors on run time

– Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors
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Limit Cases of Amdahl’s Law

• Speed up formula:

– Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors

– Case:
• fs = 0, fp = 1, then S = N
• N goes to infinity: S = 1/fs, so if 10% of the code is sequential, you 

will never speed up by more than 10, no matter the number of 
processors.
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Illustration of Amdahl's Law

5/28/2009 www.cac.cornell.edu 1111

0

50

100

150

200

250

0 50 100 150 200 250
Number of processors

fp = 1.000
fp = 0.999
fp = 0.990
fp = 0.900S



Practical Limits: Amdahl’s Law vs. Reality
• Amdahl’s Law shows a theoretical upper limit || speedup
• In reality, the situation is even worse than predicted by Amdahl’s Law due 

to:
– Load balancing (waiting)
– Scheduling (shared processors or memory)
– Communications
– I/O
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Other Considerations

• Writing effective parallel applications is difficult!
– Load balance is important
– Communication can limit parallel efficiency
– Serial time can dominate

• Is it worth your time to rewrite your application?
– Do the CPU requirements justify parallelization?
– Will the code be used just once?
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Taxonomy of Parallel Computers

• Flynn's taxonomy classifies parallel computers into four basic types
• Nearly all parallel machines are currently MIMD
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Shared and Distributed Memory
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Shared and Distributed Memory

• Cluster computers may or may not have global memory

• Although the memory is shared by all of the cores within a node, it is 
possible to run multiple executables on the same node by using 
virtual address space

• Another possibility is to run multithreaded 
tasks that use shared-memory programming 
to use multiple cores on a single node and 
distributed-memory programming for 
exploiting many nodes.
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Other Considerations

• Writing effective parallel applications is difficult!
– Load balance is important
– Communication can limit parallel efficiency
– Serial time can dominate

• Is it worth your time to rewrite your application?
– Do the CPU requirements justify parallelization?
– Will the code be used just once?
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Programming Parallel Computers

• Programming single-processor systems is (relatively) easy due to:
– single thread of execution
– single address space

• Programming shared memory systems can benefit from the single 
address space

• Programming distributed memory systems is the most difficult due to 
multiple address spaces and need to access remote data
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Data vs Functional Parallelism

• Partition by task (functional parallelism) 
– Each process performs a different "function" or executes a different 

code section 
– First identify functions, then look at the data requirements 
– Commonly programmed with message-passing libraries 

• Partition by data (data parallelism) 
– Each process does the same work on a unique piece of data 
– First divide the data. Each process then becomes responsible for

whatever work is needed to process its data. 
– Data placement is an essential part of a data-parallel algorithm 
– Probably more scalable than functional parallelism 
– Can be programmed at a high level with OpenMP, or at a lower level 

(subroutine calls) using a message-passing library like MPI, depending 
on the machine. 
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Data Parallel Programming Example

• One code will run on 2 CPUs
• Program has array of data to be operated on by 2 CPUs so array is 

split into two parts.
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program:
…
if CPU=a then

low_limit=1
upper_limit=50

elseif CPU=b then
low_limit=51
upper_limit=100

end if
do I = low_limit, 
upper_limit

work on A(I)
end do
...
end program

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit, 
upper_limit

work on A(I)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit, 
upper_limit

work on A(I)
end do
…
end program



Task Parallel Programming Example

• One code will run on 2 CPUs
• Program has 2 tasks (a and b) to be done by 2 CPUs
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program.f:
…
initialize
...
if CPU=a then

do task a
elseif CPU=b then

do task b
end if
….
end program

CPU A CPU B

program.f:
…
initialize
…
do task a
…
end program

program.f:
…
initialize
…
do task b
…
end program



Single Program, Multiple Data (SPMD)

• SPMD: dominant programming model for shared and 
distributed memory machines.
– One source code is written
– Code can have conditional execution based on which processor 

is executing the copy
– All copies of code are started simultaneously and communicate 

and sync with each other periodically

• MPMD: more general, and possible in hardware, but no 
system/programming software enables it
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Single Program, Multiple Data (SPMD)
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Shared Memory vs. Distributed Memory

• Tools can be developed to make any system appear to look like a 
different kind of system
– distributed memory systems can be programmed as if they have shared 

memory, and vice versa
– such tools do not produce the most efficient code, but might enable 

portability
• HOWEVER, the most natural way to program any machine is to use 

tools & languages that express the algorithm explicitly for the 
architecture.
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Shared Memory Programming: OpenMP

• Shared memory systems (SMPs, cc-NUMAs) have a single address 
space:
– applications can be developed in which loop iterations (with no 

dependencies) are executed by different processors
– shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes
– OpenMP is the new standard for shared memory programming 

(compiler directives)
– Vendors offer native compiler directives
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Accessing Shared Variables

• If multiple processors want to write to a shared variable at the same 
time, there could be conflicts :
– Process 1 and 2
– read X
– compute X+1
– write X 

• Programmer, language, and/or 
architecture must provide ways 
of resolving conflicts
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OpenMP Example #1: Parallel Loop
!$OMP PARALLEL DO
do i=1,128
b(i) = a(i) + c(i)

end do

!$OMP END PARALLEL DO

• The first directive specifies that the loop immediately following 
should be executed in parallel. The second directive specifies the 
end of the parallel section (optional).

• For codes that spend the majority of their time executing the content 
of simple loops, the PARALLEL DO directive can result in significant 
parallel performance.
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OpenMP Example #2: Private Variables
!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
TEMP = A(I)/B(I)
C(I) = TEMP + SQRT(TEMP)

end do
!$OMP END PARALLEL DO

• In this loop, each processor needs its own private copy of the 
variable TEMP. If TEMP were shared, the result would be 
unpredictable since multiple processors would be writing to the 
same memory location.
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Distributed Memory Programming: MPI

• Distributed memory systems have separate address spaces for 
each processor
– Local memory accessed faster than remote memory
– Data must be manually decomposed
– MPI is the standard for distributed memory programming (library of 

subprogram calls)
– Older message passing libraries include PVM and P4; all vendors have 

native libraries such as SHMEM (T3E) and LAPI (IBM)
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Data Decomposition

• For distributed memory systems, the ‘whole’ grid or sum 
of particles is decomposed to the individual nodes
– Each node works on its section of the problem
– Nodes can exchange information
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MPI Example
• #include <. . . .> 
• #include "mpi.h"
• main(int argc, char **argv)
• {
• char message[20]; 
• int i, rank, size, type = 99; 
• MPI_Status status; 
• MPI_Init(&argc, &argv); 
• MPI_Comm_size(MPI_COMM_WORLD, &size); 
• MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
• if (rank == 0) {
• strcpy(message, "Hello, world"); 
• for (i = 1; i < size; i++) 
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD); 
• } 
• else 
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status); 
• printf( "Message from process = %d : %.13s\n", rank,message); 
• MPI_Finalize(); 
• } 
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MPI Example
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• #include <. . . .> 
• #include "mpi.h"
• main(int argc, char **argv)
• {
• char message[20]; 
• int i, rank, size, type = 99; 
• MPI_Status status; 
• MPI_Init(&argc, &argv); 
• MPI_Comm_size(MPI_COMM_WORLD, &size); 
• MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
• if (rank == 0) { 
• strcpy(message, "Hello, world"); 
• for (i = 1; i < size; i++) 
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD); 
• } 
• else 
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status); 
• printf( "Message from process = %d : %.13s\n", rank,message); 
• MPI_Finalize(); 
• } 

Initialize MPI environment
An implementation may also 
use this call as a 
mechanism for making the 
usual argc and argv 
command-line arguments 
from “main” available to all 
tasks (C language only).

Close MPI environment



MPI Example
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• #include <. . . .> 
• #include "mpi.h" 
• main(int argc, char **argv)
• {
• char message[20]; 
• int i, rank, size, type = 99; 
• MPI_Status status; 
• MPI_Init(&argc, &argv); 
• MPI_Comm_size(MPI_COMM_WORLD, &size); 
• MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
• if (rank == 0) { 
• strcpy(message, "Hello, world"); 
• for (i = 1; i < size; i++) 
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD); 
• } 
• else 
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status); 
• printf( "Message from process = %d : %.13s\n", rank,message); 
• MPI_Finalize(); 
• } 

Returns number of Processes
This, like nearly all other MPI 
functions, must be called after 
MPI_Init and before MPI_Finalize.  
Input is the name of a communicator 
(MPI_COMM_WORLD is the default 
communicator) and output is the size 
of that communicator.

Returns this process’ number, or 
rank
Input is again the name of a 
communicator and the output is the 
rank of this process in that 
communicator.



MPI Example
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• #include <. . . .> 
• #include "mpi.h" 
• main(int argc, char **argv)
• {
• char message[20]; 
• int i, rank, size, type = 99; 
• MPI_Status status; 
• MPI_Init(&argc, &argv); 
• MPI_Comm_size(MPI_COMM_WORLD, &size); 
• MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
• if (rank == 0) { 
• strcpy(message, "Hello, world"); 
• for (i = 1; i < size; i++) 
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD); 
• } 
• else 
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status); 
• printf( "Message from process = %d : %.13s\n", rank,message); 
• MPI_Finalize(); 
• } 

Send a message
Blocking send of data in the buffer.  

Receive a message
Blocking receive of data into the buffer.



MPI: Sends and Receives

• Real MPI programs must send and receive data between 
the processors (communication)

• The most basic calls in MPI (besides the initialization, 
rank/size, and finalization calls) are:
– MPI_Send
– MPI_Recv

• These calls are blocking: the source processor issuing 
the send/receive cannot move to the next statement until 
the target processor issues the matching receive/send.
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Message Passing Communication
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Message Passing Communication
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Questions?
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