
Introduction to
Parallel Computing

Susan Mehringer
Cornell University

Center for Advanced Computing
May 28, 2009

5/28/2009 www.cac.cornell.edu 1

What is Parallel Computing?

• Parallel computing: use of multiple processors or computers working
together on a common task.
– Each processor works on its section of the problem or data
– Processors can exchange information

5/28/2009 www.cac.cornell.edu 2

Why Do Parallel Computing?

• Limits of single CPU computing
– performance
– available memory

• Parallel computing allows one to:
– solve problems that don’t fit on a single CPU
– solve problems that can’t be solved in a reasonable time

• We can solve…
– larger problems
– faster
– more cases

5/28/2009 www.cac.cornell.edu 3

Parallel Terminology (1 of 3)

• serial code is a single thread of execution working on a single data
item at any one time

• parallel code has more than one thing happening at a time. This
could be
– A single thread of execution operating on multiple data items

simultaneously
– Multiple threads of execution in a single executable
– Multiple executables all working on the same problem
– Any combination of the above

• task is the name we use for an instance of an executable. Each task
has its own virtual address space and may have multiple threads.

5/28/2009 www.cac.cornell.edu 4

Parallel Terminology

• node: a discrete unit of a computer system that typically runs its
own instance of the operating system.

• core: a processing unit on a computer chip that is able to support a
thread of execution; can refer either to a single core or to all of the
cores on a particular chip.

• cluster: a collection of machines or nodes that function in some
way as a single resource.

• scheduler: assigns nodes of a cluster to a user who submits a job
• grid: the software stack designed to handle the technical and social

challenges of sharing resources across networking and institutional
boundaries. grid also applies to the groups that have reached
agreements to share their resources.

5/28/2009 www.cac.cornell.edu 5

Parallel Terminology

• synchronization: the temporal coordination of parallel tasks. It
involves waiting until two or more tasks reach a specified point (a
sync point) before continuing any of the tasks.

• parallel overhead: the amount of time required to coordinate
parallel tasks, as opposed to doing useful work, including time to
start and terminate tasks, communication, move data.

• granularity: a measure of the ratio of the amount of computation
done in a parallel task to the amount of communication.
– fine-grained (very little computation per communication-byte)
– coarse-grained (extensive computation per communication-byte).

5/28/2009 www.cac.cornell.edu 6

Limits of Parallel Computing

• Theoretical Upper Limits
– Amdahl’s Law

• Practical Limits
– Load balancing
– Non-computational sections

• Other Considerations
– time to re-write code

5/28/2009 www.cac.cornell.edu 7

Theoretical Upper Limits to Performance

• All parallel programs contain:
– parallel sections (we hope!)
– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness

• Amdahl’s Law states this formally

5/28/2009 www.cac.cornell.edu 8

Amdahl’s Law

• Amdahl’s Law places a strict limit on the speedup that
can be realized by using multiple processors.

– Effect of multiple processors on run time

– Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors

5/28/2009 www.cac.cornell.edu 9

t n = f p / N + f s()t 1

Limit Cases of Amdahl’s Law

• Speed up formula:

– Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors

– Case:
• fs = 0, fp = 1, then S = N
• N goes to infinity: S = 1/fs, so if 10% of the code is sequential, you

will never speed up by more than 10, no matter the number of
processors.

5/28/2009 www.cac.cornell.edu 10

S = 1
fs + fp / N

Illustration of Amdahl's Law

5/28/2009 www.cac.cornell.edu 1111

0

50

100

150

200

250

0 50 100 150 200 250
Number of processors

fp = 1.000
fp = 0.999
fp = 0.990
fp = 0.900S

Practical Limits: Amdahl’s Law vs. Reality
• Amdahl’s Law shows a theoretical upper limit || speedup
• In reality, the situation is even worse than predicted by Amdahl’s Law due

to:
– Load balancing (waiting)
– Scheduling (shared processors or memory)
– Communications
– I/O

5/28/2009 www.cac.cornell.edu 12

0
10
20
30
40
50
60
70
80

0 50 100 150 200 250
Number of processors

Amdahl's Law
Reality

fp = 0.99

S

Other Considerations

• Writing effective parallel applications is difficult!
– Load balance is important
– Communication can limit parallel efficiency
– Serial time can dominate

• Is it worth your time to rewrite your application?
– Do the CPU requirements justify parallelization?
– Will the code be used just once?

5/28/2009 www.cac.cornell.edu 13

Taxonomy of Parallel Computers

• Flynn's taxonomy classifies parallel computers into four basic types
• Nearly all parallel machines are currently MIMD

5/28/2009 www.cac.cornell.edu 14

Shared and Distributed Memory

5/28/2009 www.cac.cornell.edu 15

B U S

Shared memory: single address
space. All processors have access
to a pool of shared memory.
(examples: SGI Altix, IBM Power5 node)

Methods of memory access :
- Bus
- Crossbar

Distributed memory: each processor
has its own local memory. Must do
message passing to exchange data
between processors.
(examples: Clusters)

Methods of memory access :
- various topological interconnects

Network

P

M

P P P P P

M M M M M

Memory

P P P P P P

Bus

Shared and Distributed Memory

• Cluster computers may or may not have global memory

• Although the memory is shared by all of the cores within a node, it is
possible to run multiple executables on the same node by using
virtual address space

• Another possibility is to run multithreaded
tasks that use shared-memory programming
to use multiple cores on a single node and
distributed-memory programming for
exploiting many nodes.

5/28/2009 www.cac.cornell.edu 16

Other Considerations

• Writing effective parallel applications is difficult!
– Load balance is important
– Communication can limit parallel efficiency
– Serial time can dominate

• Is it worth your time to rewrite your application?
– Do the CPU requirements justify parallelization?
– Will the code be used just once?

5/28/2009 www.cac.cornell.edu 17

Programming Parallel Computers

• Programming single-processor systems is (relatively) easy due to:
– single thread of execution
– single address space

• Programming shared memory systems can benefit from the single
address space

• Programming distributed memory systems is the most difficult due to
multiple address spaces and need to access remote data

5/28/2009 www.cac.cornell.edu 18

Data vs Functional Parallelism

• Partition by task (functional parallelism)
– Each process performs a different "function" or executes a different

code section
– First identify functions, then look at the data requirements
– Commonly programmed with message-passing libraries

• Partition by data (data parallelism)
– Each process does the same work on a unique piece of data
– First divide the data. Each process then becomes responsible for

whatever work is needed to process its data.
– Data placement is an essential part of a data-parallel algorithm
– Probably more scalable than functional parallelism
– Can be programmed at a high level with OpenMP, or at a lower level

(subroutine calls) using a message-passing library like MPI, depending
on the machine.

5/28/2009 www.cac.cornell.edu 19

Data Parallel Programming Example

• One code will run on 2 CPUs
• Program has array of data to be operated on by 2 CPUs so array is

split into two parts.

5/28/2009 www.cac.cornell.edu 20

program:
…
if CPU=a then

low_limit=1
upper_limit=50

elseif CPU=b then
low_limit=51
upper_limit=100

end if
do I = low_limit,
upper_limit

work on A(I)
end do
...
end program

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit,
upper_limit

work on A(I)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit,
upper_limit

work on A(I)
end do
…
end program

Task Parallel Programming Example

• One code will run on 2 CPUs
• Program has 2 tasks (a and b) to be done by 2 CPUs

5/28/2009 www.cac.cornell.edu 21

program.f:
…
initialize
...
if CPU=a then

do task a
elseif CPU=b then

do task b
end if
….
end program

CPU A CPU B

program.f:
…
initialize
…
do task a
…
end program

program.f:
…
initialize
…
do task b
…
end program

Single Program, Multiple Data (SPMD)

• SPMD: dominant programming model for shared and
distributed memory machines.
– One source code is written
– Code can have conditional execution based on which processor

is executing the copy
– All copies of code are started simultaneously and communicate

and sync with each other periodically

• MPMD: more general, and possible in hardware, but no
system/programming software enables it

5/28/2009 www.cac.cornell.edu 22

Single Program, Multiple Data (SPMD)

5/28/2009 www.cac.cornell.edu 23

Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c

Shared Memory vs. Distributed Memory

• Tools can be developed to make any system appear to look like a
different kind of system
– distributed memory systems can be programmed as if they have shared

memory, and vice versa
– such tools do not produce the most efficient code, but might enable

portability
• HOWEVER, the most natural way to program any machine is to use

tools & languages that express the algorithm explicitly for the
architecture.

5/28/2009 www.cac.cornell.edu 24

Shared Memory Programming: OpenMP

• Shared memory systems (SMPs, cc-NUMAs) have a single address
space:
– applications can be developed in which loop iterations (with no

dependencies) are executed by different processors
– shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes
– OpenMP is the new standard for shared memory programming

(compiler directives)
– Vendors offer native compiler directives

5/28/2009 www.cac.cornell.edu 25

Accessing Shared Variables

• If multiple processors want to write to a shared variable at the same
time, there could be conflicts :
– Process 1 and 2
– read X
– compute X+1
– write X

• Programmer, language, and/or
architecture must provide ways
of resolving conflicts

5/28/2009 www.cac.cornell.edu 26

Shared variable X
in memory

X+1 in
proc1

X+1 in
proc2

OpenMP Example #1: Parallel Loop
!$OMP PARALLEL DO
do i=1,128
b(i) = a(i) + c(i)

end do

!$OMP END PARALLEL DO

• The first directive specifies that the loop immediately following
should be executed in parallel. The second directive specifies the
end of the parallel section (optional).

• For codes that spend the majority of their time executing the content
of simple loops, the PARALLEL DO directive can result in significant
parallel performance.

5/28/2009 www.cac.cornell.edu 27

OpenMP Example #2: Private Variables
!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
TEMP = A(I)/B(I)
C(I) = TEMP + SQRT(TEMP)

end do
!$OMP END PARALLEL DO

• In this loop, each processor needs its own private copy of the
variable TEMP. If TEMP were shared, the result would be
unpredictable since multiple processors would be writing to the
same memory location.

5/28/2009 www.cac.cornell.edu 28

Distributed Memory Programming: MPI

• Distributed memory systems have separate address spaces for
each processor
– Local memory accessed faster than remote memory
– Data must be manually decomposed
– MPI is the standard for distributed memory programming (library of

subprogram calls)
– Older message passing libraries include PVM and P4; all vendors have

native libraries such as SHMEM (T3E) and LAPI (IBM)

5/28/2009 www.cac.cornell.edu 29

Data Decomposition

• For distributed memory systems, the ‘whole’ grid or sum
of particles is decomposed to the individual nodes
– Each node works on its section of the problem
– Nodes can exchange information

5/28/2009 www.cac.cornell.edu 30

Grid of Problem to be solved

Node #1 works on this area
of the problem

Node #3 works on this area
of the problem

Node #4 works on this area
of the problem

Node #2 works on this area
of the problem

y

x

exchange

exchange

exchange exchange

MPI Example
• #include <. . . .>
• #include "mpi.h"
• main(int argc, char **argv)
• {
• char message[20];
• int i, rank, size, type = 99;
• MPI_Status status;
• MPI_Init(&argc, &argv);
• MPI_Comm_size(MPI_COMM_WORLD, &size);
• MPI_Comm_rank(MPI_COMM_WORLD, &rank);
• if (rank == 0) {
• strcpy(message, "Hello, world");
• for (i = 1; i < size; i++)
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
• }
• else
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);
• printf("Message from process = %d : %.13s\n", rank,message);
• MPI_Finalize();
• }

5/28/2009 www.cac.cornell.edu 31

MPI Example

5/28/2009 www.cac.cornell.edu 32

• #include <. . . .>
• #include "mpi.h"
• main(int argc, char **argv)
• {
• char message[20];
• int i, rank, size, type = 99;
• MPI_Status status;
• MPI_Init(&argc, &argv);
• MPI_Comm_size(MPI_COMM_WORLD, &size);
• MPI_Comm_rank(MPI_COMM_WORLD, &rank);
• if (rank == 0) {
• strcpy(message, "Hello, world");
• for (i = 1; i < size; i++)
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
• }
• else
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);
• printf("Message from process = %d : %.13s\n", rank,message);
• MPI_Finalize();
• }

Initialize MPI environment
An implementation may also
use this call as a
mechanism for making the
usual argc and argv
command-line arguments
from “main” available to all
tasks (C language only).

Close MPI environment

MPI Example

5/28/2009 www.cac.cornell.edu 33

• #include <. . . .>
• #include "mpi.h"
• main(int argc, char **argv)
• {
• char message[20];
• int i, rank, size, type = 99;
• MPI_Status status;
• MPI_Init(&argc, &argv);
• MPI_Comm_size(MPI_COMM_WORLD, &size);
• MPI_Comm_rank(MPI_COMM_WORLD, &rank);
• if (rank == 0) {
• strcpy(message, "Hello, world");
• for (i = 1; i < size; i++)
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
• }
• else
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);
• printf("Message from process = %d : %.13s\n", rank,message);
• MPI_Finalize();
• }

Returns number of Processes
This, like nearly all other MPI
functions, must be called after
MPI_Init and before MPI_Finalize.
Input is the name of a communicator
(MPI_COMM_WORLD is the default
communicator) and output is the size
of that communicator.

Returns this process’ number, or
rank
Input is again the name of a
communicator and the output is the
rank of this process in that
communicator.

MPI Example

5/28/2009 www.cac.cornell.edu 34

• #include <. . . .>
• #include "mpi.h"
• main(int argc, char **argv)
• {
• char message[20];
• int i, rank, size, type = 99;
• MPI_Status status;
• MPI_Init(&argc, &argv);
• MPI_Comm_size(MPI_COMM_WORLD, &size);
• MPI_Comm_rank(MPI_COMM_WORLD, &rank);
• if (rank == 0) {
• strcpy(message, "Hello, world");
• for (i = 1; i < size; i++)
• MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
• }
• else
• MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);
• printf("Message from process = %d : %.13s\n", rank,message);
• MPI_Finalize();
• }

Send a message
Blocking send of data in the buffer.

Receive a message
Blocking receive of data into the buffer.

MPI: Sends and Receives

• Real MPI programs must send and receive data between
the processors (communication)

• The most basic calls in MPI (besides the initialization,
rank/size, and finalization calls) are:
– MPI_Send
– MPI_Recv

• These calls are blocking: the source processor issuing
the send/receive cannot move to the next statement until
the target processor issues the matching receive/send.

5/28/2009 www.cac.cornell.edu 35

Message Passing Communication

5/28/2009 www.cac.cornell.edu 36

Message Passing Communication

5/28/2009 www.cac.cornell.edu 37

Questions?

5/28/2009 www.cac.cornell.edu 38

