ey Cornell University

7 Center for Advanced Computing

Lab: OpenMP

Steve Lantz
Senior Research Associate
Cornell CAC

Workshop: Introduction to Parallel Computing on Ranger, May 29, 2009

Based on materials developed at TACC



559 Cornell University
EE) Center for Advanced Computing

OpenMP lab: getting started

Log on to Ranger using your train## account:

v |

ssh -X train##@ranger.tacc.utexas.edu Your assigned
number

* Untar the file lab_openmp.tar file (in ~train00) into your directory

tar —xvf ~train00/l1ab_openmp.tar

* cd down into the lab_openmp directory

cd lab_openmp

* On the following pages, plots of library performance are only shown
for the IBM ESSL library; similar plots can be obtained for Intel MKL

5/28/2009 www.cac.cornell.edu 2



Gﬂ) Cornell University

@

Center for Advanced Computing

Using OpenMP on Ranger

« Use front end for Execute these commands
experimenting with short module unload mvapich2
runs

module swap pgi intel
module load mvapich2
module load mkil
make work

make saxpy

make saxpy2

e Submit the job after
making executables

e Proceed with the rest of
the lab while the batch _
job is running gsub job

5/28/2009 www.cac.cornell.edu 3



Gﬂ) Cornell University

@

Center for Advanced Computing

OpenMP “Hello, World”

* Look at the code in the source files hello.c and hello.f: they simply
report thread IDs in a parallel region

« Compile hello.c and hello.f for multitasking and execute with 1 to 5
threads (see also do_c_hello and do_f90 hello scripts)

F90 program: compile and run C program: compile and run
make hello 190 make hello c
setenv OMP_NUM_THREADS 3 setenv OMP_NUM_THREADS 3
-/hello_T90 -/hello_c

* Do “make run_hello c” or “make run_hello T90” for
automated execution of 1 to 16 threads

5/28/2009 www.cac.cornell.edu 4



559 Cornell University
EE) Center for Advanced Computing

Parallel Region Example

 Look at the code In file work.f90
— Threads perform some work in a subroutine called pwork
— The timer returns wall-clock time
« Compile work.f for multitasking and execute with 3 and 4 threads

— There can be a wide variation in the runs when the system is busy
— Use the top command see the load on the system
 To compile and run the work program:
make work
setenv OMP_NUM THREADS 3
./work

 Check the system load
top {hit the “1” key to see the CPU loads; hit the “q” key to quit }

5/28/2009 www.cac.cornell.edu 5



Cornell University

Parallel efficiency

system.

Execute:

make run_work

...to run the executable
for 1 through 5 threads

(Example was run on
Champion, IBM system)

5/28/2009

Center for Advanced Computing

Change N in the code and execute “make run_work” again.
Why does the parallel efficiency improve with data size N?
The graph below shows the times on a dedicated (non-busy)

Parallel Work Efficiency

——N=1500 ———
—B— N=3000
N=4000
D N=6000
VAN
n_ A
%
Re—
T T ‘ T ‘
2 3 4 5

thread count

www.cac.cornell.edu




Gﬂ) Cornell University

Center for Advanced Computing

@

SAXPY Scheduling

 Look at the code In file saxpy.f
— The nested loop performs a simple SAXPY type operation
— N determines the size of the problem (N=1024*40 is the default)
« Compare the performance under different types of scheduling
1. Compile the code
2. Set the scheduling type: “static”, “dynamic”, or “dynamic, 64"
3. Run the program with 1-5 threads, repeat for different scheduling
4. Repeat steps 1-3 for different values of N

Compile and run the saxpy program: Look at the system load:

make saxpy top {hit the “gq” key to quit}
setenv OMP_SCHEDULE static
make run_saxpy

5/28/2009 www.cac.cornell.edu 7



Cornell University

Center for Advanced Computing

SAXPY performance

(Example taken from Champion w/ ESSL - make sure you see the MKL library results in
the next section, SAXPY loops are notoriously slow on RISC architectures)

Dependence of SAXPY performance on scheduling type

850
800 ﬁ
750

700 /—

650

600

—&@— dynamic
=l dynamic,64
static

550

500

450

400

thread count

5/28/2009 www.cac.cornell.edu 8



Gﬂ) Cornell University

@

Center for Advanced Computing

Intel MKL DAXPY (library routine)

* Look at the code In file saxpy?2.f
— The nested loop performs a DAXPY operations for each outer loop
— The DAXPY routine comes from the MKL Library, which must be loaded

« Execute the do_saxpy?2 script and compare the result from your
previous saxpy runs

— Change the parameter N and the scheduling clause to agree with your
previous runs

e Use the top command to watch the load on the system

make saxpy2
make run_saxpy?2

5/28/2009 www.cac.cornell.edu 9



Gﬂ) Cornell University

@

Center for Advanced Computing

Library vs. hand coding

(Example taken from Champion w/ ESSL)

ESSL vs hand-coded SAXPY

1800
1600
1400
1200
1000
800
600 1‘_______i.-----g--------------‘--------------‘F
400 —&— naive SAXPY
200 —fll— ESSL SAXPY
0

2 3 4 5

thread count

5/28/2009 www.cac.cornell.edu 10



	Lab: OpenMP
	Parallel Region Example
	Parallel efficiency
	SAXPY Scheduling
	SAXPY performance
	Intel MKL DAXPY (library routine)
	Library vs. hand coding

