
Lab: OpenMP

Steve Lantz
Senior Research Associate

Cornell CAC

Workshop: Introduction to Parallel Computing on Ranger, May 29, 2009
Based on materials developed at TACC

5/28/2009 www.cac.cornell.edu 2

• Log on to Ranger using your train## account:

ssh -X train##@ranger.tacc.utexas.edu

• Untar the file lab_openmp.tar file (in ~train00) into your directory

tar –xvf ~train00/lab_openmp.tar

• cd down into the lab_openmp directory

cd lab_openmp

• On the following pages, plots of library performance are only shown
for the IBM ESSL library; similar plots can be obtained for Intel MKL

Your assigned
number

OpenMP lab: getting started

5/28/2009 www.cac.cornell.edu 3

• Use front end for
experimenting with short
runs

• Submit the job after
making executables

• Proceed with the rest of
the lab while the batch
job is running

Using OpenMP on Ranger

Execute these commands
module unload mvapich2
module swap pgi intel
module load mvapich2
module load mkl
make work
make saxpy
make saxpy2
qsub job

5/28/2009 www.cac.cornell.edu 4

C program: compile and run

make hello_c
setenv OMP_NUM_THREADS 3
./hello_c

• Look at the code in the source files hello.c and hello.f: they simply
report thread IDs in a parallel region

• Compile hello.c and hello.f for multitasking and execute with 1 to 5
threads (see also do_c_hello and do_f90_hello scripts)

F90 program: compile and run

make hello_f90
setenv OMP_NUM_THREADS 3
./hello_f90

OpenMP “Hello, World”

• Do “make run_hello_c” or “make run_hello_f90” for
automated execution of 1 to 16 threads

5/28/2009 www.cac.cornell.edu 5

Parallel Region Example

• Look at the code in file work.f90
– Threads perform some work in a subroutine called pwork
– The timer returns wall-clock time

• Compile work.f for multitasking and execute with 3 and 4 threads
– There can be a wide variation in the runs when the system is busy
– Use the top command see the load on the system

• To compile and run the work program:
make work
setenv OMP_NUM_THREADS 3
./work

• Check the system load
top {hit the “1” key to see the CPU loads; hit the “q” key to quit }

5/28/2009 www.cac.cornell.edu 6

• Change N in the code and execute “make run_work” again.
• Why does the parallel efficiency improve with data size N?
• The graph below shows the times on a dedicated (non-busy)

system.
Parallel Work Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5

thread count

T
im

e
 (

s

N=1500
N=3000
N=4000
N=6000

Parallel efficiency

Execute:

make run_work

…to run the executable
for 1 through 5 threads

(Example was run on
Champion, IBM system)

5/28/2009 www.cac.cornell.edu 7

SAXPY Scheduling

• Look at the code in file saxpy.f
– The nested loop performs a simple SAXPY type operation
– N determines the size of the problem (N=1024*40 is the default)

• Compare the performance under different types of scheduling
1. Compile the code
2. Set the scheduling type: “static”, “dynamic”, or “dynamic, 64”
3. Run the program with 1-5 threads, repeat for different scheduling
4. Repeat steps 1-3 for different values of N

Compile and run the saxpy program:
make saxpy
setenv OMP_SCHEDULE static
make run_saxpy

Look at the system load:
top {hit the “q” key to quit}

5/28/2009 www.cac.cornell.edu 8

SAXPY performance
(Example taken from Champion w/ ESSL - make sure you see the MKL library results in

the next section, SAXPY loops are notoriously slow on RISC architectures)

Dependence of SAXPY performance on scheduling type

400

450

500

550

600

650

700

750

800

850

2 3 4 5

thread count

dynamic

dynamic,64

static

5/28/2009 www.cac.cornell.edu 9

Intel MKL DAXPY (library routine)

• Look at the code in file saxpy2.f
– The nested loop performs a DAXPY operations for each outer loop
– The DAXPY routine comes from the MKL Library, which must be loaded

• Execute the do_saxpy2 script and compare the result from your
previous saxpy runs
– Change the parameter N and the scheduling clause to agree with your

previous runs
• Use the top command to watch the load on the system

make saxpy2
make run_saxpy2

5/28/2009 www.cac.cornell.edu 10

Library vs. hand coding

(Example taken from Champion w/ ESSL)

ESSL vs hand-coded SAXPY

0

200

400

600

800

1000

1200

1400

1600

1800

2 3 4 5

thread count

naive SAXPY

ESSL SAXPY

	Lab: OpenMP
	Parallel Region Example
	Parallel efficiency
	SAXPY Scheduling
	SAXPY performance
	Intel MKL DAXPY (library routine)
	Library vs. hand coding

