
7/13/2010 www.cac.cornell.edu 1

Debugging and Profiling

Nate Woody

Debugging

• Debugging is a methodical process of finding and reducing the
number of bugs, or defects, in a computer program or a piece of
electronic hardware thus making it behave as expected. Debugging
tends to be harder when various subsystems are tightly coupled, as
changes in one may cause bugs to emerge in another.

• A debugger is a computer program that is used to test and debug
other programs.

• This can be hard enough with a single local process and but get’s
many times more complicated with many remote processes
executing asynchronously. This is why Parallel Debuggers exist.

7/13/2010 www.cac.cornell.edu 2

Debugging Requirements

• In general, while debugging you may need to:
– Step through code
– Set/Run to breakpoints
– Examine variable values at different points during execution
– Examine the memory profile/usage
– Provide source-level information after a crash

• For MPI and OpenMP Code we have additional requirements
– All of the above for remote processes
– Examine MPI message status
– Step individual processes independent of the rest

7/13/2010 www.cac.cornell.edu 3

Profiling

7/13/2010 www.cac.cornell.edu 4

• Software performance analysis
– Profiling is examining where a given code is spending it’s time so that

you can understand the performance characteristics of a program or
set of functions.

– There are several levels of profiling, but we will talking about function
level profiling which provides information on the frequency and duration
of function calls.

– A profile is a statistical summary of function calls, generally you get the
number of times each function was called and the total amount of time
spend in the function.

– The goal of profiling is to identify “hot spots”, which are functions that
occupy an inordinate amount of the total time of a program, which
means that optimization of these functions will provide the greatest
benefit.

Profiling

• The most basic form of profiling is finding out how long something
runs for. On *nix platforms, we always have time and date.

• Time will give you the total wall time, user time, and system time of a
process, which can help you understand how efficiently your
process is running.
– $ time sleep 5
– real 0m5.003s
– user 0m0.000s
– sys 0m0.000s

• Real is the walltime of the process. We slept for 5 seconds, so the
total walltime is pretty close to 5 seconds. User is the time spent
processing userland instructions. Sys is the time spent executing
system calls.

7/13/2010 www.cac.cornell.edu 5

Profiling

• Let’s take a closer look at timing and understand those categories a
bit better. There is a medium-sized zipped file in the lab bundle,
let’s unzip it and see what that takes.
– Time bunzip2 –kf wikipedia2text –extracted.txt.bz2
– real 0m2.983s
– user 0m2.796s
– sys 0m0.192s

• This looks better, we see that we actually did something here. The
extraction work of the bunzip2 command was recorded as user time
(it was YOUR binary), but what is system time? That’s time spent in
the linux kernel itself, a good example of this are calls to things in
the std* headers. A lot of this time is going to end up in the kernel.

7/13/2010 www.cac.cornell.edu 6

Profiling

• I’ve included a couple of files to investigate what’s going on here,
the first is counts2words, this is just a little program that reads in one
file and writes most of the contents out to another. So if File I/O is
system time, this should show as almost all sys time, right?
– $ time counts2words arxiv_words.al words.out
– real 0m0.128s
– user 0m0.96s
– sys 0m0.028s

• Well, no not really. What’s up? Let’s actually do pure File I/O, first
create a big 500GB file, then dump it into a new file
– $ time dd if=/dev/zero of=/tmp/test.bin bs=500000000 count=1
– $ time cat /tmp/test.bin >> /tmp/test2.bin

7/13/2010 www.cac.cornell.edu 7

Profiling

• The output of count2words is used for substring, which searches for
a word (or string of characters) in a file of words.
– $ time substring words.out zero

real 1m31.317s
user 1m31.306s
sys 0m0.12s

• That looks a lot like grep, we can use time to see how long that
takes.
– $ time grep –c zero words.out

Real 0m0.008s
User 0m0.000s
Sys 0m0.004s

7/13/2010 www.cac.cornell.edu 8

Profiling

• So our version of substring is appalling, we probably would like to
know why this so slow.

• The first question might be, how much time is spent loading the file
and how much is spent searching the file? Unfortunately, we can’t
seem to time File I/O (or at least very easily), so we need a finer-
grained approach.

• This is easily done with timing in the code, using the built in time and
clock functions (#include <time.h>) and getting wall clock times for
arbitrary parts of our code.

t0 = time(NULL);
DO WORK

t1 = time(NULL);
printf(“elapsed wall clock: %ld\n”, (long) (t1-t0))

7/13/2010 www.cac.cornell.edu 9

Time and Clock

• Any Unix-ish system will have time and clock available, and they
can get confused, but they’re not the same thing.

• time(NULL) – pulls the current system time, basically asks the
system to check the calendar and report the current time. The
precision of this can vary, but the ANSI standard is seconds only.

• Clock() – this doesn’t actually measure time, it measures cpu-ticks.
This is why we have to divide by CLOCKS_PER_SECOND in order
to convert this into a time. This implies that this is a sub-second
timer, but it only measures actual cpu time. So anything that doesn’t
use the processor doesn’t get included here (File I/O is the most
common pitfall here).

7/13/2010 www.cac.cornell.edu 10

Profiling

• Our timing told us that our guess was right, while the substring is
slow, the appalling slowness is from how we are reading the file.

• Our next step is we really need to know which part of the file read is
so painfully slow. Maybe that line terminator check is getting us? In
order to figure this out, we really need an understanding of timing at
a functional level. This is where a profiling tool comes in.

• Gprof – standard gnu tool for profiling code. Available everywhere
gcc is available, can fail in interesting ways.

• Valgrind – standard developer tool for memory profiling and provides
a good profiling tool as well. Available pretty much everywhere and
very robust.

• Oprofile – newer tool which seems to be rapidly displacing gprof,
very robust, but you’ll probably need to install your own.

7/13/2010 www.cac.cornell.edu 11

gprof

• Running gprof is relatively straight forward, we recompile with –pg
and run the program as usual. This produces the gmon.out file
which contains statistics about how many times things were called.
We then call gprof to sort that out into a text file.
– $ make profile
– $./substring words.out zero
– $ gprof substring >> profile_results

• Profile_results is a text file that will have a perplexing result in it.

7/13/2010 www.cac.cornell.edu 12

% cumulative self self total
time seconds seconds calls ms/call ms/call name
0.00 0.00 0.00 362559 0.00 0.00 trimNewLine
0.00 0.00 0.00 1 0.00 0.00 loadFile
0.00 0.00 0.00 1 0.00 0.00 substring

Profiling
• Flat profile – total time and number of calls of function

• Call graph – See how a function was called

7/13/2010 www.cac.cornell.edu 13

% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write

index % time self children called name
[1] 100. 0 0.00 0.05 1/1 start [1]

0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

Gprof for profiling

• Gprof is used for monitoring the performance of a FUNCTIONAL
program to help guide optimization efforts.
– It’s not a debugger, make sure you’re program is working the way you

want before you think about profiling.
– Optimization often results in less readable, modular, and maintainable

code, the best optimization strategy may be to not optimize.
• In order to get profiling output, compile with the –pg option.

– Generally, you’ll want to use all the other compile flags that you are
using, otherwise you may be profiling code that performs differently than
it does. However, in most cases, this is not a huge issue. Try it both
ways if you are concerned.

7/13/2010 www.cac.cornell.edu 14

Profiling – Lab 1

• Included in the lab section is linpack.c which is a traditional tool for
measuring the performance of High Performance Computing
systems, but is also useful for looking at any computing system.

• The goal of this lab is to generate gprof output for this function.
• You will need to

– Compile this function with the appropriate options (standard build below)
$ gcc –DDP –DROLL –lm linpack.c –o linpac

– Run the program to get gmon.out output
– Run gprof to get the text-ified results
– Examine the output and identify the function that should most likely be

optimized to make linpack faster.
• Advanced users can try and fix substring to make it less awful!

7/13/2010 www.cac.cornell.edu 15

Profiling

• Gprof will only give you valid counter information on functions that it
was able to annotate. It can’t annotate functions in system libraries,
and so we get stuck with very little useful information from this
because all of our work is in system calls. This isn’t really a problem
in non-toy problems, and if necessary you can get that information.

• Valgrind will give us a bit more without any work!
– $ valgrind –tool=callgrind ./substring words.out zero

7/13/2010 www.cac.cornell.edu 16

Profiling

• Time versus counts
– Call counts as reported by gprof and valgrind are both completely

accurate. This is your best information to understand what is being
called.

– Time can be less accurate. The example that we provide is a
pathological case where all of the time is from system calls that we
know don’t get reported very well. You should expect better
performance.

– Don’t be afraid to use time and clock to get timings on functions where
profiling isn’t working well. If you’re going to spend 2 hours trying to get
gprof to report the granularity that you need, just insert the timing
statements and go!

7/13/2010 www.cac.cornell.edu 17

Profiling

• The timing’s we’ve mentioned just use the system time. MPI
provides a nice high-resolution timer that can be used to generate
timings in mpi code. Take a look at p2p_perf for examples.

• While valgrind is not installed on Ranger, it is easy to compile in
your home directory. It will compile readily with any of the compilers
you might use there. If you are writing C or C++ code, I highly
recommend you become familiar with this tool suite.

• The longer your run is the more accurate things like gprof become.
P2p_perf is a good example of this. That little test is used to identify
latency and bandwidth characteristics of the interconnect. However,
you need lots of iterations in order to develop reasonable timings.
Your smallest dataset is likely a bad choice for doing profiling.

7/13/2010 www.cac.cornell.edu 18

Profiling Caveats

• Basically, you’re looking for functions that occupy a large amount of
system time and/or are called a inordinate amount of times.
– Functions that takes lots of time are candidates for optimization,

particularly if they are called heavily. This will give you the best bang for
the buck.

– Functions that are called many times but don’t occupy much system
time are probably losers for optimization. You won’t see much benefit
from optimizing these even if you do!

• You should be careful about I/O!
– I/O wait is not reported in profiling numbers, so examine timing

information in I/O heavy functions carefully.
• Be cautious in interpretation of absolute time
• Don’t shortchange the sample data when generating profile data

7/13/2010 www.cac.cornell.edu 19

Lab 2 – Profiling (Optional)

• p2p_perf.c uses MPI_Wtime to get a accurate timer available in
jobs.

• The object of p2p_perf is to provide is to provide information about
latency and bandwidth characteristics of an interconnect. You can
learn something about latency by sending very small messages and
you can learn something about bandwidth by sending very large
messages.

1) Examine p2p_perf.c to see the use of MPI_Wtime use.
2) Compile p2p_perf using your preferred compiler
3) Write a batch script that will run p2p_perf to perform a ping-pong

between two different nodes. From the results, estimate the
maximum bandwidth that you are able to achieve on the Ranger
interconnect.

7/13/2010 www.cac.cornell.edu 20

Debugging Tools

• Debugging requires a debugger, of which many are available.
– Your development environment may well have a built-in debugger

available. Eclipse is a good a good example, which provides a nice
interface to a debugger.

• GDB – The GNU Project Debugger
– Universally available debugger that can debug C, C++, and Fortran

code (if you can compile it with GCC, you should be able to debug it
with gdb).

– GDB has a command line interface to walking through code that takes a
little getting used to.

– Your code must be compiled in debug mode before you can use GDB,
you can’t just start debugging a binary.

7/13/2010 www.cac.cornell.edu 21

Debugging with GDB

• Step 1 – build with debugging symbols.
– $ g++ -ggdb –Wall –o test main.cc

• Step 2 – launch the application inside the debugger
– $ gdb test

• Step 3 – Run the application
– $ (gdb) run

• Step 4 – Examine the backtrace
– $(gdb) backtrace

• Step 5 – Examine the parameter values
– $ (gdb) x 0x7fffa408c3d4

7/13/2010 www.cac.cornell.edu 22

Breakpoints and stepping

• Previously, we just used the debugger to examine what happened
after the program exploded. It may be more useful to examine the
program before it blows up, which can be done by setting
breakpoints and stepping.

• A breakpoint halts execution of the program at a specific source line.
– (gdb) break LinkedList<int>::remove

• This can be made conditional by using the “condition” statement, so
that the breakpoint only occurs when a specific condition is meant.
– (gdb) condition 1 item_to_remove==1

• Re start using run and execution will be halted at the breakpoint.
Execute one line of code by using step.
– (gdb) step

7/13/2010 www.cac.cornell.edu 23

GDB commands summary

• run – execute the program from beginning.
• backtrace – produce the backtrace from the last fault
• break <line number> or break <function-name> - break at the line

number or at the use of the funciton
• delete <breakpoint number> - remove a breakpoint
• step – step to next line of code (step into function if possible)
• next – step to next line of code (do not step into function)
• list – print source list (list <function> to print a specific function)
• print <variable name> - print the value stored by the variable
• continue – run until next break point
• quit – quit
• help – get help on any command
7/13/2010 www.cac.cornell.edu 24

Lab 3 - Debugging

• Example3.c is a buggy print mangler, that you will likely be able to
fix.

1) Compile example3.c
2) Execute example3 – it will segfault on you
3) Compile example3.c with debugging turned on
4) Start example3.c in the debugger so you can examine the

backtrace information.
5) Set a breakpoint at line 6, and step through the code until you can

find what happens.
6) Once you understand the problem, fix the offending line(s) and

recompile
If you get hungup, look in example3.fixed for some solutions.

7/13/2010 www.cac.cornell.edu 25

Instrumenting code for logging and
Debugging

7/13/2010 www.cac.cornell.edu 26

Debugging and Logging

• GDB is a debugger that you would use when you have identified a
problem in your code and you’re trying to isolate and identify the
source of the problem.

• Printf() debugging is the debugging style where you add all sorts of
printf(), cout, print, System.out.println(), etc to dump information to
stdout or stderr to track what the problem is.
– Learned folks often disapprove of such nonsense and suggest that

practical use of a debugger is vastly more efficient.
– Practical folks will admit to it’s utility and point to the fact that it allows

continuous monitoring of the code outside of a debugger
– Both are right, and with some simple setup, you can add

debugging/logging statements to your code that will be useful,
informative, and unintrisive.

7/13/2010 www.cac.cornell.edu 27

Printf Debugging

• First, let’s take a look at what the much feared printf debugging
looks like.

7/13/2010 www.cac.cornell.edu 28

int main (int argc, char** argv) {
printf(“Starting main…”);
int iterations = 5;
int val = 0, val2=0;
printf(“Initialized val to %d and val2 to %d”, val, val2);
while (iterations --) {

val = sometime();
print(“Sometime() returned %d\n”, val);
val2 = moretime();
printf(“moretime() returned %d\n”, val);

}
printf(“Exiting main, iterations ==%s\d”, iterations);

Printf Debugging

• With this example, we have pretty much covered the code with 5
printf statements. This results in several problems that can occur.
– You have drastically increased the number of lines of code, and it’s

quite easy to make an error in one of these new lines (mess up a format
string and you’re debugging breaks your program). The number of lines
required to get debugging level information is very high.

– There is no easy way to remove these lines from your code without
potentially breaking something. If you insert these lines in the middle of
a debugging session, if they aren’t manually removed this function will
forever emit all of this stuff on stdout. I hope no meaningful data goes
to stdout anywhere.

– Writing to stdout slows down your program significantly, having a printf
in the middle of a tight for loop will have a big impact on performance.

7/13/2010 www.cac.cornell.edu 29

Advantages of Printf Debugging

• There are some cases where printf-style debugging is useful.
– Long running applications where erronous results are produced. Using

a debugger is most useful when the identifying crashes or once the
function/class/etc that has a bug is identified. Printf may help you
identify the function or class where deviations occur.

– It allows you to examine optimized code instead of code with debugging
symbols added. It also let’s you get output while running at full scale for
parallel applications. This is occasionally useful.

– Running multi-threaded or on remote machines. Connecting a
debugger to a remote process can be difficult and tracking forks etc is
non-trivial.

– Help identify transient and/or timing related bugs.

7/13/2010 www.cac.cornell.edu 30

What to do

• Printf debugging certainly has advantages, but it also creates
ugliness in your code as well potentially the source of problems
unrelated to the one you’re trying to solve!

• These can be mitigated with a few easy steps
– Don’t ever use stdout, use stderr (unbuffered, seperation, etc)
– Don’t call printf directly, use a macro/function/class that handles the

output safely.
– Use “levels”, which are the criticality of the problem and range from

debug (the lines we showed earlier) to warning (possible erronous
values). You can then control when and where these various levels are
printed.

7/13/2010 www.cac.cornell.edu 31

Logging Libraries

• What we’re actually talking about is “logging”.
– Logging is the process of computer systems logging state changes and

informational content to a central location where they can be recorded
and examined later.

– Here’s a chunk of an up2date log (stashed in /var/log/up2date)

• There are libraries that we can use to get safe, readable logging
added to your code very easily.

7/13/2010 www.cac.cornell.edu 32

[Mon May 18 09:53:49 2009] up2date logging into up2date server
[Mon May 18 09:53:50 2009] up2date succesfully retrieved authentication token
[Mon May 18 09:55:20 2009] up2date Updating pacakge profile
[Mon May 18 09:57:25 2009] up2date Updating package profile

Log4Blah

• Log4J is an Apache Foundation project that provides logging utility
for Java. The interface to this has now been copied to many
different languages.
– Log4Net – is for .NET and works with C++, C#, etc.
– Log4CXX – is for C++ and works for most platforms.
– Log4c – is for C
– Log4py and log4p– is for python
– Log4Ruby – you get the idea, yes?

• Other logging libraries exist, Log4J is the only one that crosses so
many different languages, which makes it a little easier to use.

• As far as I know if you’re using fortran, you’ll need to implement the
logging yourself (if someone knows differently, please let me know).

7/13/2010 www.cac.cornell.edu 33

Log4J Features

• Automatic formatting of output with appending timestamps and who
emitted the log.

• A library of “Appenders” which are objects that control how and
where a log line is written.
– RollingLogAppender – logs to a file which rolls when it reaches a certain

size or date.
– SocketAppender – logs over a socket to a log server
– DatabaseAppenders – log information to a database

• It is a best-effort fail-stop system.
– This means that it will not emit unexpected expectations causing your

application to crash but will try really hard to actually log your info.
• It provides easy control of logging level at runtime

7/13/2010 www.cac.cornell.edu 34

What does it look like

• Replacing printf lines with log lines doesn’t significantly change the
look of the program, some extra boilerplate and a logger object must
be grabbed.

7/13/2010 www.cac.cornell.edu 35

int main (int argc, char** argv) {
log4c_init();
mycat = log4c_category_get(“sillyapp.main");
int iterations = 5;
log4c_category_log(mycat, LOG4C_PRIORITY_DEBUG,"Debugging app 1

- loop %d", iterations);
int val = 0, val2=0;
log4c_category_log(mycat, LOG4C_PRIORITY_ERROR, “Some error”
printf(“Initialized val to %d and val2 to %d”, val, val2);
…

Configuration

7/13/2010 www.cac.cornell.edu 36

Results

• Log messages are then shunted to the appropriate location and
formatted prior to putting them in the log.

• We can fancy things up and add headers and footers, as well as all
sorts of other fanciness (log different levels to different
files/appenders).

• There are many programs out there designed for “log file analysis”,
aka handling large nicely formatted log files.

7/13/2010 www.cac.cornell.edu 37

[Header]
2009-05-13 15:21:14,315 [11] WARN Logger.Program Pretty sure I'm getting ready to die!
2009-05-13 15:21:14,331 [11] ERROR Logger.Program uh-oh, no I wasn't!
2009-05-13 15:21:14,331 [11] FATAL Logger.Program blech. Out
[Footer]

Conclusion

• Ad hoc printf debugging probably causes as many problems as it
solves

• Nonetheless, it can be highly useful in some cases.
• A few easy steps can make this style of debugging much less

problematic and the early inclusion of a logging library will save you
a lot of time down the line.

• The log4J line of loggers are a nice suite of tools that serve many
different languages with a common interface and actions.

7/13/2010 www.cac.cornell.edu 38

DDT
Distributed Debugging Tool

Parallel Debugging on Ranger

7/13/2010 www.cac.cornell.edu 39

DDT

• DDT – Distributed Debugging Tool (www.allinea.com)
• A graphical debugger for scalar, multi-threaded and parallel

applications for C, C++ and Fortran
• DDT’s provides graphical process grouping functionality. DDT

makes it really easy to assign arbitrary processes into groups which
can be acted on separatly.

• Provides memory debugging features as well, things like checking
pointers, array bounds, etc.

• Provides functionality to interact reasonable with STL components
(ie you can see what a map actually contains) and create views for
your own objects.

• Allows viewing of MPI message queues for running processes

7/13/2010 www.cac.cornell.edu 40

http://www.allinea.com/

DDT Demo

• By far the best way to show what DDT can do is to start it up and
look at it and show some things with it. Once we do this, we’ll have
everybody log in and make sure they can DDT started.

• We’ll talk about:
– Creating and altering groups
– Stepping groups and processes
– Show Cross-group comparison
– Show Memory Usage/Profiling
– Show MPI Queues
– Show multi-dimensional array viewer

7/13/2010 www.cac.cornell.edu 41

Starting DDT

7/13/2010 www.cac.cornell.edu 42

• Login to ranger with an X tunnel
$ ssh –X ranger.tacc.utexas.edu

• We need a binary compiled with debugging flags. If you don’t have
a binary already on ranger, you can get one from the train00
directory

login3% mkdir ~/ddt

login3$ cp ~train00/ddt_debug/debug_code.f .

• Ensure you have your preferred compiler loaded
login3% module list

login3% module unload mvapich

login3% module swap pgi intel

login3% module load mvapich

Starting DDT

• Compile with debugging flags
login3% cd ~/ddt

login3% mpif90 –g –O0 debug_code.f –o ddt_app

• Load the DDT module
login3% module list

login3% module load ddt

login3% module list

login3% echo $DDTROOT

• Start DDT
login3% ddt ddt_app

7/13/2010 www.cac.cornell.edu 43

Starting DDT

7/13/2010 www.cac.cornell.edu 44

Click!

Running a job

7/13/2010 www.cac.cornell.edu 45

Add any arguments

Ranger default

Sets number
of nodes

Click when ready
to submit job

Account Name

7/13/2010 www.cac.cornell.edu 46

Provide
allocation id
(qsub -A value)
then click OK

Waiting for job to start

7/13/2010 www.cac.cornell.edu 47

Job starting, connecting to all remote processes

7/13/2010 www.cac.cornell.edu 48

Session started!

7/13/2010 www.cac.cornell.edu 49

Root process
is selected

Source
locations of
processes

STDOUT Watched Values, Expressions

Local
variables

DDT

• At this point, DDT should be up and running for you and you only
need to load the DDT module and any configuration changes you
made (ie Account name) will be saved for the next time you use it.

• It should feel very much like an IDE debugger, just with the added
capabilities of viewing remote processes and MPI information.

• It wasn’t shown, but this can be used just as well to debug OpenMP
programs, though you may need to be careful when stepping
through non-threaded sections. Check out the User Guide for any
questions you have or request help through the TeraGrid help desk.

• UserGuide: http://www.allinea.com/downloads/userguide.pdf
Or press F1 while running DDT to call up the help.

7/13/2010 www.cac.cornell.edu 50

http://www.allinea.com/downloads/userguide.pdf

DDT Lab

• The DDT Lab is a free-form opportunity to get DDT running.
• Open an SSH session with an X-tunnel to ranger.tacc.utexas.edu

and get the example code:
login3$ cp ~train00/ddt_debug/debug_code.f .

• Compile
login3% mpif90 –g –O0 debug_code.f –o ddt_app

• Load the DDT Module and run ddt
login3% module load ddt

login3% ddt ddt_app

7/13/2010 www.cac.cornell.edu 51

	Debugging and Profiling
	Debugging
	Debugging Requirements
	Profiling
	Profiling
	Profiling
	Profiling	
	Profiling
	Profiling		
	Time and Clock
	Profiling
	gprof
	Profiling
	Gprof for profiling
	Profiling – Lab 1
	Profiling
	Profiling
	Profiling
	Profiling Caveats
	Lab 2 – Profiling (Optional)
	Debugging Tools
	Debugging with GDB
	Breakpoints and stepping
	GDB commands summary
	Lab 3 - Debugging
	Instrumenting code for logging and Debugging
	Debugging and Logging
	Printf Debugging
	Printf Debugging
	Advantages of Printf Debugging
	What to do
	Logging Libraries
	Log4Blah
	Log4J Features
	What does it look like
	Configuration
	Results
	Conclusion	
	DDT�Distributed Debugging Tool�
	DDT
	DDT Demo
	Starting DDT
	Starting DDT
	Starting DDT
	Running a job
	Account Name
	Waiting for job to start
	Job starting, connecting to all remote processes
	Session started!
	DDT
	DDT Lab

