
OpenMP Exercises

These exercises will introduce you to using OpenMP for parallel
programming. There are four exercises:

1. Hello world
2. Parallel region
3. Dynamic scheduling
4. Hand coding vs. libraries

To begin, log onto an interactive node of Ranger using your account:
ssh -X <user-name>@ranger.tacc.utexas.edu
Untar the openmp_lab.tar file (in ~train400) into your directory:
tar xvf ~train400/openmp_lab.tar
cd down into the openmp_lab directory
cd openmp_lab

The makefile that comes with these exercises is set up to use the Intel
compilers, but the PGI compilers are the default when you log on, so switch
compilers:
module swap pgi intel
Also, some of the exercises require the Intel Math Kernel Library, so add
that to your list of modules:
module add mkl

OMP Hello world
The Hello world example is very short, so for convenience we will run it on
the interactive node where you're logged in. The other examples will run
longer and will involve measuring performance, so they will be done on
dedicated nodes through the batch system.

Look at the code in hello.c and/or hello.f90. This code simply reports
OpenMP thread IDs in a parallel region. Compile hello.c or hello.f using the
makefiles provided and execute first with 3 threads and then with 2 to 16
threads.
make hello_c or make hello_f90
setenv OMP_NUM_THREADS 3
./hello_c or ./hello_f90
make run_hello_c or make run_hello_f90

https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#hello
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#parreg
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#dyn
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#lib

Parallel Region
Look at the code in work.f90. Threads perform some work in a subroutine
called pwork. The timer returns wall-clock time. Compile work.f90 and run it
with one set of threads to verify that it built properly. Running with other
numbers of threads will be done in a batch job after all of the executables
have been built.

make work
setenv OMP_NUM_THREADS 3
./work

Dynamic Scheduling
Look at the code in file saxpy.f90. The nested loop performs a simple
DAXPY type operation. Parameter N determines the size of the problem
(N=1024*4 is the default). Compare the performance with static and
dynamic scheduling. A more detailed comparison will be done in the batch
job.

make saxpy
setenv OMP_SCHEDULE static
./saxpy
setenv OMP_SCHEDULE dynamic
./saxpy

Hand coding vs. libraries
Look at the code in file saxpy2.f90. The nested loop performs a DAXPY
operation for each outer loop. The DAXPY routine comes from the Intel
MKL library. You should have loaded its module at the beginning of these
exercises. Compare the performance with what you saw in the previous
exercise with the hand-coded version of DAXPY. Then run a batch job that
makes more detailed comparisons on a dedicated node.

make saxpy2
setenv OMP_SCHEDULE static
./saxpy2
setenv OMP_SCHEDULE dynamic
./saxpy2
Edit the job file to put your account number after the -A flag
qsub job

