
Scalability

Steve Lantz

Senior Research Associate

Cornell University Center for Advanced Computing (CAC)

slantz@cac.cornell.edu

Workshop: High Performance Computing on Stampede, Jan. 14-15, 2015

www.cac.cornell.edu

mailto:slantz@cac.cornell.edu
mailto:slantz@cac.cornell.edu

Putting Performance into Design and Development

…later we’ll talk about principles and

practices during various stages of

code development that lead to better

performance on a per-core basis

MODEL ALGORITHM
IMPLEMEN-

TATION
COMPILATION

RUNTIME

ENVIRONMENT

PARALLELISM,

SCALABILITY

DATA LOCALITY,

LIBRARIES

COMPILER

OPTIONS

DIAGNOSTICS

AND TUNING

We’ll start with

how to design

for parallelism

and scalability…

1/15/2015 www.cac.cornell.edu 2

Planning for Parallel

• Consider how your model might be expressed as an algorithm that

naturally splits into many concurrent tasks

• Consider alternative algorithms that, even though less efficient for

small numbers of processors, scale better so that they become more

efficient for large numbers of processors

• Start asking these kinds of questions during the first stages of

design, before the top level of the code is constructed

• Reserve matters of technique, such as whether to use OpenMP or

MPI, for the implementation phase

1/15/2015 www.cac.cornell.edu 3

Scalable Algorithms

• Generally the choice of algorithm is what has the biggest impact on

parallel scalability

• An efficient and scalable algorithm typically has the following

characteristics:

– The work can be separated into numerous tasks that proceed almost

totally independently of one another

– Communication between the tasks is infrequent or unnecessary

– Lots of computation takes place before messaging or I/O occurs

– There is little or no need for tasks to communicate globally

– There are good reasons to initiate as many tasks as possible

– Tasks retain all the above properties as their numbers grow

1/15/2015 www.cac.cornell.edu 4

What Is Scalability?

• Ideal is to get N times more work done on N processors

• Strong scaling: compute a fixed-size problem N times faster

– Speedup S = T1 / TN ; linear speedup occurs when S = N

– Can’t achieve it due to Amdahl’s Law (no speedup for serial parts)

• Weak scaling: compute a problem N times bigger in the same

amount of time

– Speedup depends on the amount of serial work remaining constant or

increasing slowly as the size of the problem grows

– Assumes amount of communication among processors also remains

constant or grows slowly

1/15/2015 www.cac.cornell.edu 5

How Amdahl’s Law Defeats Strong Scaling

• For large N, the parallel speedup doesn’t asymptote to N, but to a

constant 1/a, where a is the serial fraction of the work

• The graph below compares perfect speedup (green) with maximum

speedup of code that is 99.9%, 99% and 90% parallelizable

Speedup = S(N) = T(1)/T(N)

S(N) = (p + s)/(p/N + s)

Define a = s/(s+p)

S(N) = N/[1+(N-1)a]

For large N, S(N) -> 1/a

T(N) = total time = p/N + s

 p = parallel workload

 s = serial time

S(N) = speedup = T(1)/T(N)

 = (p + s)/(p/N + s)

If a = s/(p + s), then

S(N) = N/[1+(N-1)a]

 -> 1/a for large N

1/15/2015 www.cac.cornell.edu 6

Why Weak Scaling Tends to Work Better

• Let’s relax the assumption that the parallel workload p is fixed;

instead, assume p(N) = Nt, so that p grows with N (weak scaling)

• Again, the idea is to do more tasks of fixed size t in the same length

of “wall” time, rather than a fixed workload in less time

• Gustafson’s Law: the “scaled speedup” is linear in N

– But slope is less than 1, unless the code is “embarrassingly parallel”

T(N) = total time = p/N + s

 p = N*t, grows with N

S(N) = speedup = T(1)/T(N)

 = (t + s)/(N*t/N + s)

 = 1, no speedup...

But more WORK gets done!...

U(N) = total WORK = p + s

 again, p = N*t, grows with N

W(N) = "scaled speedup" = U(N)/U(1)

 = (N*t + s)/(t + s)

If f = t/(t + s), then

W(N) = N*f + (1-f), scales with N

1/15/2015 www.cac.cornell.edu 7

Is My Application Scalable?

If you’re using Stampede, you’re probably looking for weak scaling…

1. Need to run a much larger case using more resources

– Example: run a fluid model at extremely high resolution

2. Need to run many more cases using more resources

– Example: run a larger number of simulations to generate statistics

3. Commonly 1 and 2 are needed together

– Local cluster has insufficient memory or takes unacceptably long

Getting N times the work done on N cores is feasible when…

• Small problem sizes keep every node of a local cluster busy

• Your code has the scalability properties mentioned earlier

• Easiest scenario: all cases are totally independent of each other

– Yes, this is still parallel; it’s called “embarrassingly parallel”

1/15/2015 www.cac.cornell.edu 8

Capability vs. Capacity

• HPC jobs can be divided into two categories, capability runs and

capacity runs

– A capability run occupies nearly all the resources of the machine for a

single job

– Capacity runs occur when many smaller jobs fill up the machine

simultaneously

• The big capability runs are typically achieved via weak scaling

– Strong scaling usually applies only over some finite range of N and

breaks down when N becomes huge because of Amdahl’s Law, parallel

overhead, etc.

– A trivially parallelizable code is an extreme case of weak scaling;

however, replicating such a code really just fills up the machine with a

bunch of capacity runs instead of one big capability run

1/15/2015 www.cac.cornell.edu 9

The Role of Benchmarks

• More sophisticated prediction of your code’s scalability requires

knowing details about hardware and software performance

• This is the purpose of running benchmarks

• Different types of benchmarks have different measurement goals:

– Hardware or micro-benchmarks gauge low-level things like processor

floating point speed, point-to-point bandwidth, and write speed to disk

– Synthetic benchmarks focus on individual algorithms; for example, the

NAS Parallel Benchmarks include separate tests oflinear algebra

functions like pentadiagonal solvers and block tridiagonal solvers

– Application benchmarks try to measure (in wall time) how much useful

work is done by a system for a typical end-user code; in effect, it’s a

series of synthetic algorithms, with data movement and I/O in between

• Often these are run for various core counts, on multiple platforms

1/15/2015 www.cac.cornell.edu 10

Predicting Actual Scalability

• Consider the time to compute a fixed workload due to N workers:

•

• The number and size of messages might themselves depend on N

(unless all travel in parallel!), suggesting a model of the form:

• Latency and bandwidth depend on hardware and are measured via

benchmarks; other constants depend partly on the application

total time = computation + message initiation + message bulk

computation = parallel workload/N + serial time (Amdahl’s Law)

message initiation = number of messages * latency

message bulk = size of all messages / bandwidth

total time = parallel workload/N + serial time

 + k0 * N^a * latency + k1 * N^b / bandwidth

1/15/2015 www.cac.cornell.edu 11

The Shape of Speedup

Modeled speedup (purple) could be worse than Amdahl’s Law (blue)

due to the overhead of message passing. Look for better strategies.

1/15/2015 www.cac.cornell.edu 12

Example of Performance Modeling

• Imagine a parallel code that simulates heat flow in a flat metal plate

– Tasks are assigned different subdomains (domain decomposition)

– Each task needs to communicate only with its nearest neighbors

• As N increases:

– The number of messages per worker is unchanged

– Message size per worker (edge data) actually decreases as N
-1/2

• Apply the previous model for strong scaling –

• Assuming our “non-blocking” network allows all workers’ messages

to travel in parallel (Stampede comes close!), we find a = 0, b = -1/2

• Our formula does not account for synchronization overhead

1/15/2015 www.cac.cornell.edu 13

total time = parallel workload/N + serial time

 + k0 * N^a * latency + k1 * N^b / bandwidth

How Do You Get to Petascale with MPI?

• Favor local communications over global

– Nearest-neighbor is fine; all-to-all is trouble

• Avoid frequent synchronization

– Any load imbalances are paid for through waiting at sync points

– Thus, MPI collective calls may become surprisingly long (if blocking)

– Even random, brief OS interruptions (“jitter” or “noise”) can effectively

cause load imbalances

– Balancing must become ever more precise as the number of processes

increases...

• But you don’t have to program with MPI alone

– There are additional ways to use all the resources of an HPC system…

1/15/2015 www.cac.cornell.edu 14

Non-Uniform RAM Arrangement on Stampede

• Many nodes distributed memory

– each node has its own local memory

– not directly addressable from other nodes

• Multiple sockets per node

– each node has 2 sockets (chips)

• Multiple cores per socket

– each socket (chip) has 8 cores

• Memory spans all 16 cores shared memory

– node’s full local memory is addressable from any core in any socket

• Memory is attached to sockets

– 8 cores sharing the socket have fastest access to attached memory

– we are ignoring any attached MIC coprocessors for the moment…

CPU CPU

CPU CPU

CPU CPU

CPU CPU RAM

CPU CPU

CPU CPU

CPU CPU

CPU CPU RAM

1/15/2015 www.cac.cornell.edu 15

How do we deal with NUMA (Non-Uniform Memory Access)?

Parallel programs usually assume one of two uniform architectures

• Threads for shared memory

– parent process uses OpenMP or pthreads to fork multiple threads

– threads share the same virtual address space

– also known as SMP = Symmetric MultiProcessing

• Message passing for distributed memory

– processes use MPI to pass messages (data) between each other

– each process has its own virtual address space

If we attempt to combine both types of models –

• Hybrid programming

– try to exploit the whole shared/distributed memory hierarchy

Dealing with NUMA

1/15/2015 www.cac.cornell.edu 16

Two Views of a Stampede Node

C
P

U

OpenMP

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

MPI

0 1

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

other

nodes

1/15/2015 www.cac.cornell.edu 17

Creating Hybrid Configurations

To achieve configurations like these, we must be able to:

• Assign to each process/thread an affinity for some set of cores

• Make sure the allocation of memory is appropriately matched

Master MPI Process + Worker Thread

Single MPI Process on Core

16 MPI Tasks
1 MPI Task
16 Threads/Task

2 MPI Tasks
8 Threads/Task

Worker Thread for Master MPI Process

Pure SMP Node Pure MPI Node

1/15/2015 www.cac.cornell.edu 18

Fortran C

include 'mpif.h'

program hybsimp

call MPI_Init(ie)

call MPI_Comm_rank(...irk,ie)

call MPI_Comm_size(...isz,ie)

!Setup shared mem, comp/comm

!$OMP parallel do

 do i=1,n

 <work>

 enddo

!Compute & communicate

call MPI_Finalize(ierr)

end

#include <mpi.h>

int main(int argc,

 char **argv) {

int rank, size, ie, i;

ie= MPI_Init(&argc,&argv[]);

ie= MPI_Comm_rank(...&rank);

ie= MPI_Comm_size(...&size);

//Setup shared mem, comp/comm

#pragma omp parallel for

 for(i=0; i<n; i++){

 <work>

 }

// compute & communicate

ie= MPI_Finalize();

}

Threading Example: One MPI, Many OpenMP

1/15/2015 www.cac.cornell.edu 19

Programming for MIC: Hybrid and Heterogeneous

• Each Stampede node currently has 2 processors + 1 MIC card

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card

that features >60 cores; released as Xeon Phi™

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA

– Answers the question: if 8 modern Xeon cores fit on a die, how many

early Pentiums would fit?

• MIC answers CUDA’s API problem: just compile like any normal

code

– Instruction set is x86 with support for 64-bit addressing

– Recent x86 extensions may not be available

– Developers use familiar Intel compilers, libraries, and tools

• However, MIC adds yet another level of programming complexity

– Stampede is a multi-core machine where not all the cores are the same

1/15/2015 www.cac.cornell.edu 20

Levels of Communication

1/15/2015 www.cac.cornell.edu 21

Links to and within a node

• Least speedy: PCIe2 to

the external InfiniBand

• Comparable speed:

PCIe2 to the MIC!

• Fastest: channels to

RAM (about 6GB/s/core

on host and MIC alike)

• Comparable speed: dual

QPI link between the two

sockets on the host, for

uniform memory sharing

between the processors

The MIC is like another node on the IB

network, with its own OS, own internal

memory, and own external IP address

Implications for Hybrid Programming

• Within a node, there ought to be loose coupling between the Sandy

Bridge cores on the one hand, and the Xeon Phi cores on the other

• Precisely the same loose coupling ought to carry over to these

hardware groups on other nodes…

• Conceptually, it’s as if we have a double-size cluster consisting of

two very different types of nodes (host and MIC)

• How does a hybrid code achieve the needed loose coupling?

– Run several MPI processes on the MIC as well as on the host

(“symmetric”); have each process fork enough OpenMP threads to keep

all the cores busy

– Run MPI processes only on host; use the offload capability to launch

OpenMP threads on MIC

1/15/2015 www.cac.cornell.edu 22

MIC Strategies for HPC Codes

No change –

run on CPUs,

MICs, or both

Expand existing

hybrids; or, add

OpenMP offload

Auto-offload by

calling Intel MKL,

PETSc, etc.

Initial MPI code,

could be hybrid

with OpenMP

1/15/2015 www.cac.cornell.edu 23

Conclusions

• Scalability is the issue in large-scale computing

• Scalability is dominantly affected by the choice of algorithm

• A scalable algorithm has the following characteristics:

– Natural high-level separation into many independent parallel tasks

– Infrequent, asynchronous communication between tasks

– Rare synchronization of tasks (even tasks that are load balanced)

• If the above isn’t true of your parallel algorithm, look for another

• Weak scaling is sufficient: do N times the work in the same time

• Performance models and benchmarks help in understanding limits

– Can account for particular software and hardware features

• Forward-looking architectures like Stampede require hybrid coding

– Work must be split into processes and threads on heterogeneous cores

1/15/2015 www.cac.cornell.edu 24

