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Putting Performance into Design and Development 

…later we’ll talk about principles and 

practices during various stages of 

code development that lead to better 

performance on a per-core basis 

MODEL ALGORITHM 
IMPLEMEN- 

TATION 
COMPILATION 

RUNTIME 

ENVIRONMENT 

PARALLELISM, 

SCALABILITY 

DATA LOCALITY, 

LIBRARIES 

COMPILER 

OPTIONS 

DIAGNOSTICS 

AND TUNING 

We’ll start with 

how to design 

for parallelism 

and scalability… 
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Planning for Parallel 

• Consider how your model might be expressed as an algorithm that 

naturally splits into many concurrent tasks 

 

• Consider alternative algorithms that, even though less efficient for 

small numbers of processors, scale better so that they become more 

efficient for large numbers of processors 

 

• Start asking these kinds of questions during the first stages of 

design, before the top level of the code is constructed 

 

• Reserve matters of technique, such as whether to use OpenMP or 

MPI, for the implementation phase 
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Scalable Algorithms 

• Generally the choice of algorithm is what has the biggest impact on 

parallel scalability 

 

• An efficient and scalable algorithm typically has the following 

characteristics: 

– The work can be separated into numerous tasks that proceed almost 

totally independently of one another 

– Communication between the tasks is infrequent or unnecessary  

– Lots of computation takes place before messaging or I/O occurs  

– There is little or no need for tasks to communicate globally 

– There are good reasons to initiate as many tasks as possible 

– Tasks retain all the above properties as their numbers grow 
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What Is Scalability? 

• Ideal is to get N times more work done on N processors 

 

• Strong scaling: compute a fixed-size problem N times faster 

– Speedup S = T1 / TN ; linear speedup occurs when S = N 

– Can’t achieve it due to Amdahl’s Law (no speedup for serial parts) 

 

• Weak scaling: compute a problem N times bigger in the same 

amount of time 

– Speedup depends on the amount of serial work remaining constant or 

increasing slowly as the size of the problem grows 

– Assumes amount of communication among processors also remains 

constant or grows slowly 

1/15/2015 www.cac.cornell.edu 5 



How Amdahl’s Law Defeats Strong Scaling 

• For large N, the parallel speedup doesn’t asymptote to N, but to a 

constant 1/a, where a is the serial fraction of the work 

• The graph below compares perfect speedup (green) with maximum 

speedup of code that is 99.9%, 99% and 90% parallelizable 

Speedup = S(N) = T(1)/T(N) 

S(N) = (p + s)/(p/N + s) 

Define a = s/(s+p) 

S(N) = N/[1+(N-1)a] 

For large N, S(N) -> 1/a 

T(N) = total time = p/N + s 

     p = parallel workload  

     s = serial time 
 

S(N) = speedup = T(1)/T(N) 

     = (p + s)/(p/N + s) 
 

If a = s/(p + s), then 

S(N) = N/[1+(N-1)a] 

     -> 1/a for large N 
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Why Weak Scaling Tends to Work Better 

• Let’s relax the assumption that the parallel workload p is fixed; 

instead, assume p(N) = Nt, so that p grows with N (weak scaling) 

• Again, the idea is to do more tasks of fixed size t in the same length 

of “wall” time, rather than a fixed workload in less time 

• Gustafson’s Law: the “scaled speedup” is linear in N 

– But slope is less than 1, unless the code is “embarrassingly parallel” 

T(N) = total time = p/N + s 

     p = N*t, grows with N  
 

S(N) = speedup = T(1)/T(N) 

     = (t + s)/(N*t/N + s) 

     = 1, no speedup... 
 

But more WORK gets done!...  

U(N) = total WORK = p + s 

     again, p = N*t, grows with N  
 

W(N) = "scaled speedup" = U(N)/U(1) 

     = (N*t + s)/(t + s) 
 

If f = t/(t + s), then 

W(N) = N*f + (1-f), scales with N 
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Is My Application Scalable? 

If you’re using Stampede, you’re probably looking for weak scaling… 

1. Need to run a much larger case using more resources 

– Example: run a fluid model at extremely high resolution 

2. Need to run many more cases using more resources 

– Example: run a larger number of simulations to generate statistics 

3. Commonly 1 and 2 are needed together 

– Local cluster has insufficient memory or takes unacceptably long 

Getting N times the work done on N cores is feasible when… 

• Small problem sizes keep every node of a local cluster busy 

• Your code has the scalability properties mentioned earlier 

• Easiest scenario: all cases are totally independent of each other 

– Yes, this is still parallel; it’s called “embarrassingly parallel” 
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Capability vs. Capacity 

• HPC jobs can be divided into two categories, capability runs and 

capacity runs 

– A capability run occupies nearly all the resources of the machine for a 

single job 

– Capacity runs occur when many smaller jobs fill up the machine 

simultaneously 

 

• The big capability runs are typically achieved via weak scaling 

– Strong scaling usually applies only over some finite range of N and 

breaks down when N becomes huge because of Amdahl’s Law, parallel 

overhead, etc. 

– A trivially parallelizable code is an extreme case of weak scaling; 

however, replicating such a code really just fills up the machine with a 

bunch of capacity runs instead of one big capability run 
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The Role of Benchmarks 

• More sophisticated prediction of your code’s scalability requires 

knowing details about hardware and software performance 

• This is the purpose of running benchmarks 

• Different types of benchmarks have different measurement goals: 

– Hardware or micro-benchmarks gauge low-level things like processor 

floating point speed, point-to-point bandwidth, and write speed to disk  

– Synthetic benchmarks focus on individual algorithms; for example, the 

NAS Parallel Benchmarks include separate tests oflinear algebra 

functions like pentadiagonal solvers and block tridiagonal solvers 

– Application benchmarks try to measure (in wall time) how much useful 

work is done by a system for a typical end-user code; in effect, it’s a 

series of synthetic algorithms, with data movement and I/O in between 

• Often these are run for various core counts, on multiple platforms 
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Predicting Actual Scalability 

• Consider the time to compute a fixed workload due to N workers:  

 

 

•  

 

• The number and size of messages might themselves depend on N 

(unless all travel in parallel!), suggesting a model of the form: 

 

 

 

• Latency and bandwidth depend on hardware and are measured via 

benchmarks; other constants depend partly on the application 

 

total time = computation + message initiation + message bulk 

computation = parallel workload/N + serial time   (Amdahl’s Law) 

message initiation = number of messages * latency 

message bulk = size of all messages / bandwidth 

total time = parallel workload/N + serial time 

           + k0 * N^a * latency + k1 * N^b / bandwidth 
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The Shape of Speedup 

Modeled speedup (purple) could be worse than Amdahl’s Law (blue) 

due to the overhead of message passing. Look for better strategies. 
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Example of Performance Modeling 

• Imagine a parallel code that simulates heat flow in a flat metal plate 

– Tasks are assigned different subdomains (domain decomposition) 

– Each task needs to communicate only with its nearest neighbors 

• As N increases: 

– The number of messages per worker is unchanged 

– Message size per worker (edge data) actually decreases as N 
-1/2 

• Apply the previous model for strong scaling – 

 

 

• Assuming our “non-blocking” network allows all workers’ messages 

to travel in parallel (Stampede comes close!), we find a = 0, b = -1/2 

• Our formula does not account for synchronization overhead 
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How Do You Get to Petascale with MPI? 

• Favor local communications over global 

– Nearest-neighbor is fine; all-to-all is trouble 

 

• Avoid frequent synchronization 

– Any load imbalances are paid for through waiting at sync points 

– Thus, MPI collective calls may become surprisingly long (if blocking) 

– Even random, brief OS interruptions (“jitter” or “noise”) can effectively 

cause load imbalances 

– Balancing must become ever more precise as the number of processes 

increases... 

 

• But you don’t have to program with MPI alone 

– There are additional ways to use all the resources of an HPC system… 
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Non-Uniform RAM Arrangement on Stampede 

• Many nodes distributed memory  

– each node has its own local memory 

– not directly addressable from other nodes 

• Multiple sockets per node  

– each node has 2 sockets (chips) 

• Multiple cores per socket  

– each socket (chip) has 8 cores 

• Memory spans all 16 cores shared memory  

– node’s full local memory is addressable from any core in any socket 

• Memory is attached to sockets  

– 8 cores sharing the socket have fastest access to attached memory 

– we are ignoring any attached MIC coprocessors for the moment… 

 

CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU RAM 

CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU RAM 
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How do we deal with NUMA (Non-Uniform Memory Access)? 

Parallel programs usually assume one of two uniform architectures 

• Threads for shared memory  

– parent process uses OpenMP or pthreads to fork multiple threads  

– threads share the same virtual address space  

– also known as SMP = Symmetric MultiProcessing 

• Message passing for distributed memory  

– processes use MPI to pass messages (data) between each other  

– each process has its own virtual address space 

If we attempt to combine both types of models – 

• Hybrid programming  

– try to exploit the whole shared/distributed memory hierarchy 

Dealing with NUMA 
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Two Views of a Stampede Node 
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Creating Hybrid Configurations  

To achieve configurations like these, we must be able to:  

• Assign to each process/thread an affinity for some set of cores  

• Make sure the allocation of memory is appropriately matched 

Master MPI Process + Worker Thread 

Single MPI Process on Core 

16 MPI Tasks 
1 MPI Task 
16 Threads/Task 

2 MPI Tasks 
8 Threads/Task 

Worker Thread for Master MPI Process 

Pure SMP Node Pure MPI Node 
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Fortran C 

include 'mpif.h' 

program hybsimp 

 

 

call MPI_Init(ie) 

call MPI_Comm_rank(...irk,ie) 

call MPI_Comm_size(...isz,ie) 

!Setup shared mem, comp/comm 

 

!$OMP parallel do 

  do i=1,n 

    <work> 

  enddo 

 

!Compute & communicate 

call MPI_Finalize(ierr) 

end 

#include <mpi.h> 

int main(int argc, 

  char **argv) { 

int rank, size, ie, i; 

ie= MPI_Init(&argc,&argv[]); 

ie= MPI_Comm_rank(...&rank); 

ie= MPI_Comm_size(...&size); 

//Setup shared mem, comp/comm 

 

#pragma omp parallel for 

  for(i=0; i<n; i++){ 

    <work> 

  } 

 

// compute & communicate 

ie= MPI_Finalize(); 

} 

Threading Example: One MPI, Many OpenMP 
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Programming for MIC: Hybrid and Heterogeneous 

• Each Stampede node currently has 2 processors + 1 MIC card 

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card 

that features >60 cores; released as Xeon Phi™ 

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA 

– Answers the question: if 8 modern Xeon cores fit on a die, how many 

early Pentiums would fit? 

• MIC answers CUDA’s API problem: just compile like any normal 

code 

– Instruction set is x86 with support for 64-bit addressing 

– Recent x86 extensions may not be available 

– Developers use familiar Intel compilers, libraries, and tools 

• However, MIC adds yet another level of programming complexity 

– Stampede is a multi-core machine where not all the cores are the same 
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Levels of Communication 
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Links to and within a node 

• Least speedy: PCIe2 to 

the external InfiniBand  

• Comparable speed: 

PCIe2 to the MIC! 

• Fastest: channels to 

RAM (about 6GB/s/core 

on host and MIC alike) 

• Comparable speed: dual 

QPI link between the two 

sockets on the host, for 

uniform memory sharing 

between the processors 

The MIC is like another node on the IB 

network, with its own OS, own internal 

memory, and own external IP address 



Implications for Hybrid Programming 

• Within a node, there ought to be loose coupling between the Sandy 

Bridge cores on the one hand, and the  Xeon Phi cores on the other 

• Precisely the same loose coupling ought to carry over to these 

hardware groups on other nodes… 

• Conceptually, it’s as if we have a double-size cluster consisting of 

two very different types of nodes (host and MIC) 

• How does a hybrid code achieve the needed loose coupling? 

– Run several MPI processes on the MIC as well as on the host 

(“symmetric”); have each process fork enough OpenMP threads to keep 

all the cores busy 

– Run MPI processes only on host; use the offload capability to launch 

OpenMP threads on MIC 
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MIC Strategies for HPC Codes 

No change – 

run on CPUs, 

MICs, or both 

Expand existing 

hybrids; or, add 

OpenMP offload 

Auto-offload by 

calling Intel MKL, 

PETSc, etc. 

Initial MPI code, 

could be hybrid 

with OpenMP 

1/15/2015 www.cac.cornell.edu 23 



Conclusions 

• Scalability is the issue in large-scale computing 

• Scalability is dominantly affected by the choice of algorithm 

• A scalable algorithm has the following characteristics: 

– Natural high-level separation into many independent parallel tasks 

– Infrequent, asynchronous communication between tasks 

– Rare synchronization of tasks (even tasks that are load balanced) 

• If the above isn’t true of your parallel algorithm, look for another 

• Weak scaling is sufficient: do N times the work in the same time 

• Performance models and benchmarks help in understanding limits 

– Can account for particular software and hardware features 

• Forward-looking architectures like Stampede require hybrid coding 

– Work must be split into processes and threads on heterogeneous cores 
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