Tau Lab

Login to Ranger with X tunneling turned on (-X or -Y).

% ssh –X –I train## ranger.tacc.utexas.edu

You will now have a "login4 % or login3 % prompt; but for brevity, only "%" will be displayed below.

Make sure you can display back to your (Linux, Windows, Mac) workstation.

% xclock

You should get this clock:

Either close the clock or type ^c (control-c).

Short Lab: Use provided Sample

% tar -xvf ~train00/lab_tau_short.tar

% cd tau_short

READ the Instructions file If you are using a C shell (all class accounts) If you are using a Bourne shell

% source sourceme.csh

% source sourceme.sh

Long Lab: Build and Submit Example

% tar -xvf ~train00/lab_tau_long.tar

% cd tau	READ the Instructions file
% source sourceme.csh	If you are using a C shell (all class accounts)
% source sourceme.sh	If you are using a Bourne shell
% make matmultf	create executable for F90 programmers
% make matmultc	create executable, for C programmers
% qsub job	submit job (edit and uncomment ibrun line)
Wait for the output to retu	rn, using watch to view qstat info every 8 seconds:

% watch –n 8 qstat

Exit out of watch once display shows no queued job, by typing ^c (control-c).

View Profile Information

Look for these directories once the job is finished: MULTI__GET_TIME_OF_DAY MULTI__FP_OPS MULTI__PAPI_L1_DCM

When you launch paraprof, it will automatically include these directories as "trials".

% paraprof (for GUI) Analyze performance data

Experiment with paraprof options

The Get_Time_of_Day profile will be displayed automatically

Display the Legend

Windows→Function Legend

(Observe that core 0 is the master and does no mxm work.)

Turn off normalization. Line up bars Change from usec to seconds Options→Normalize Bars Options→Stack Bars Together File→preferences... In the **Units** menu select **seconds**, then click apply.

Display Profile for a single function

Show MULTIPLY_MATRICES. Function results.

Click on any blue bar.

Display Statistics

Show the statistics for . core 1 and core 15.

Within the profile window click Windows→Threads→Statistics Table. In new window select n,c,t 15,0,0, followed by n,c,t 1,0 0.

Determine the message size(s) of the MPI_Rec function

Within the profile window click Windows→Threads→ User Event Statistics. (Select any n, c, t value.) What is the difference in the number of Send/Receives for task 1 and task 15?

Derive the FLOPS/Cache Miss

Show that the FLOPS/Cache miss ratio is constant for all Cores.

In the manager window click: Options→ Show Derived Metrics Panel Click on the PAPI_L1_DCM trial.

(Value appears as Argument 1: box.) Click on PAPI_FP_OPS

(Value appears in Argument 1: box, PAPI_L1_DCM is moved to Arg. 2 box) Click on Apply Operation.

Observe the Ratio Profile

Click on "PAPI_FP_OPS + PAPI_L1_DCM" trial.

Other Experiments (Long Lab only!)

Experiment 1 **

Look at the available PAPI counters in the papi_counters_on_nodes file and run the job with a different set of counters (COUNTER2 and COUNTER3):

- 1.) Edit job (change counters)
- 2.) Submit job (qsub job)
- 3.) Run paraprof when job has completed.

Experiment 2 **

Look through the list of TAU_MAKEFILES by executing:

% tauTypes

** Move your old MULT__xxx directories to a subdirectory so that they are not removed and can be viewed for comparison.

Use the callpath makefile (Makefile.tau-callpath-icpc-mpi-pdt) to create an experiment that shows the call tree with these commands:

% setenv TAU_MAKEFILE \$MYPKGDIR/x86_64/lib/Makefile.tau-callpath-icpc-mpi-pdt or

% source sourceme_callpath.csh

% make clean

% make or make matmultc

```
% qsub job
```

Other Experiments

** Move your old MULT__xxx directories to a subdirectory so that they are not removed and can be viewed for comparison.

Experiment 3

Edit matmultc.c or matmultf.f and change the broadcast so that B is broadcast as a matrix instead of a set of columns Now recompile, run and compare: make clean; make matmultc or make matmultf; qsub job; ... paraprof.