
3/10/2009 www.cac.cornell.edu 1

Parallel Debugging with DDT

Nate Woody

Debugging

• Debugging is a methodical process of finding and reducing the
number of bugs, or defects, in a computer program or a piece of
electronic hardware thus making it behave as expected. Debugging
tends to be harder when various subsystems are tightly coupled, as
changes in one may cause bugs to emerge in another.

• A debugger is a computer program that is used to test and debug
other programs.

• This can be hard enough with a single local process and but get’s
many times more complicated with many remote processes
executing asynchronously. This is why Parallel Debuggers exist.

3/10/2009 www.cac.cornell.edu 2

Debugging Requirements

• In general, while debugging you may need to:
– Step through code
– Set/Run to breakpoints
– Examine variable values at different points during execution
– Examine the memory profile/usage
– Provide source-level information after a crash

• For MPI and OpenMP Code we have additional requirements
– All of the above for remote processes
– Examine MPI message status
– Step individual processes independent of the rest

3/10/2009 www.cac.cornell.edu 3

DDT

• DDT – Distributed Debugging Tool (www.allinea.com)
• A graphical debugger for scalar, multi-threaded and parallel

applications for C, C++ and Fortran
• DDT’s provides graphical process grouping functionality. DDT

makes it really easy to assign arbitrary processes into groups which
can be acted on separatly.

• Provides memory debugging features as well, things like checking
pointers, array bounds, etc.

• Provides functionality to interact reasonable with STL components
(ie you can see what a map actually contains) and create views for
your own objects.

• Allows viewing of MPI message queues for running processes

3/10/2009 www.cac.cornell.edu 4

Integrating with SGE

• DDT works by submitting a job to the Ranger development queue
and attaches the process once it’s started on a compute node. This
works by a job template.

• The template then takes arguments provided by the DDT GUI to
generate a batch script that executes your job with the appropriate
arguments.

• The default configuration of DDT (which you get when you start DDT
the first time) provides a default template that prepares an SGE job
template.

• The template allows you enough flexibility to provide most
arguments that you would need to set (walltime, account number,
number of processors, etc).

login4% cat $DDTROOT/templates/sge.qtf
#!/bin/bash
3/10/2009 www.cac.cornell.edu 5

DDT Job Template ($DDTROOT/template/sge.qpt)
#!/bin/bash
QUEUE_TAG: {type=text,label="Queue",default=development}
WALL_CLOCK_LIMIT_TAG: {type=text,label="Wall Clock Limit",default="0:30:00",mask="9:09:
09"}
PROJECT_TAG: {type=text,label="Project"}
#$ -N DDTJOB
#$ -q QUEUE_TAG
#$ -o ddt.o$JOB_ID
#$ -cwd
#$ -j y
#$ -V
#$ -l h_rt=WALL_CLOCK_LIMIT_TAG
#$ -pe 16way NUM_PROCS_TAG
#$ -A PROJECT_TAG
Run the program with the debugger
ibrun DDTPATH_TAG/bin/ddt-debugger DDT_DEBUGGER_ARGUMENTS_TAG

PROGRAM_ARGUMENTS_TAG
3/10/2009 www.cac.cornell.edu 6

Parallel Environment setting is fixed!

Pulls settings from GUI

Executes your job inside the debugger via ibrun

DDT Demo

• By far the best way to show what DDT can do is to start it up and
look at it and show some things with it. Once we do this, we’ll have
everybody log in and make sure they can DDT started.

• We’ll talk about:
– Creating and altering groups
– Stepping groups and processes
– Show Cross-group comparison
– Show Memory Usage/Profiling
– Show MPI Queues
– Show multi-dimensional array viewer

3/10/2009 www.cac.cornell.edu 7

Starting DDT

3/10/2009 www.cac.cornell.edu 8

• Login to ranger with an X tunnel
$ ssh –X ranger.tacc.utexas.edu

• We need a binary compiled with debugging flags. If you don’t have
a binary already on ranger, you can get one from the train00
directory

login3% mkdir ~/ddt
login3$ cp ~train00/ddt_debug/debug_code.f .

• Ensure you have your preferred compiler loaded
login3% module list
login3% module unload mvapich
login3% module swap pgi intel
login3% module load mvapich

Starting DDT

• Compile with debugging flags
login3% cd ~/ddt
login3% mpif90 –g –O0 debug_code.f –o ddt_app

• Load the DDT module
login3% module list
login3% module load ddt
login3% module list
login3% echo $DDTROOT

• Start DDT
login3% ddt ddt_app

3/10/2009 www.cac.cornell.edu 9

Starting DDT

3/10/2009 www.cac.cornell.edu 10

Click!

Running a job

3/10/2009 www.cac.cornell.edu 11

Add any arguments

Ranger default

Sets number
of nodes

Click when ready
to submit job

Account Name

3/10/2009 www.cac.cornell.edu 12

Provide
allocation id
(qsub -A value)
then click OK

Waiting for job to start

3/10/2009 www.cac.cornell.edu 13

Job starting, connecting to all remote processes

3/10/2009 www.cac.cornell.edu 14

Session started!

3/10/2009 www.cac.cornell.edu 15

Root process
is selected

Source
locations of
processes

STDOUT Watched Values, Expressions

Local
variables

DDT

• At this point, DDT should be up and running for you and you only
need to load the DDT module and any configuration changes you
made (ie Account name) will be saved for the next time you use it.

• It should feel very much like an IDE debugger, just with the added
capabilities of viewing remote processes and MPI information.

• It wasn’t shown, but this can be used just as well to debug OpenMP
programs, though you may need to be careful when stepping
through non-threaded sections. Check out the User Guide for any
questions you have or request help through the TeraGrid help desk.

• UserGuide: http://www.allinea.com/downloads/userguide.pdf
Or press F1 while running DDT to call up the help.

3/10/2009 www.cac.cornell.edu 16

