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What is Vectorization?

« Hardware Perspective: Specialized instructions, registers, or
functional units to allow in-core parallelism for operations on arrays
(vectors) of data.

« Compiler Perspective: Determine how and when it is possible to
express computations in terms of vector instructions

» User Perspective: Determine how to write code in a manner that
allows the compiler to deduce that vectorization is possible.
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Vectorization: Hardware

« Goal: parallelize computations over vector arrays

« Two major approaches: pipelining, SIMD (Single Instruction Multiple
Data)
* Pipelining: Several different tasks executing simultaneously
— Popular through 1990s in supercomputing contexts
— Large vectors, Many cycles per “instruction”
« SIMD: Many instances of a single task executing simultaneously
— Late ‘90s — present, commodity CPUs (x86, x64, PowerPC, etc)
— Small vectors, few cycles per instruction

— Newer CPUs (Sandy Bridge) can pipeline some SIMD instructions as
well — best of both worlds.
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Vectorization: Pipelining

Clock Cycle R1 R2

1 X,

2 X, X2

3 X, X,2

4 X, X2

5 Xe X,2

6 Load Xg2

! Square

8 Add

Hypothetical pipelined operations
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R3

X,%+8
X,%+8
X3%+8
X,2+8
X2+8

Divide

R4

(X,2+8)/2
(X,2+8)/2
(X52+8)/2
(X,2+8)/2
(X52+8)/2
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Vectorization: Hardware: SIMD

Clock R1 R2 R3 R4
1 [X4, Xs... Xe]
2 [X,2, X,2...X2]
3 [X,2+8, X,2+8...X%+8]
4 Load [(X,2+8)/2,
(X,2+8)/2
Square ..
Add (X2+8)/2]
Divide

Hypothetical SIMD operations
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Vectorization via SIMD: Motivation

« CPU speeds reach a plateau
— Power limitations!
— Many “slow” transistors more efficient than fewer “fast” transistors

* Process improvements make physical space cheap
» Moore’s law, 2x every 18-24 months
« Easy to add more “stuff”

* One solution: More cores
— First dual core Intel CPUs appear in 2005
— Increasing in number rapidly (e.g. 8 in Stampede, 60+ on MIC)
« Another Solution: More FPU units per core — vector operations
— First appeared on a Pentium with MMX in 1996
— Increasing in vector width rapidly (e.g. 512-bit [8 doubles]) on MIC
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Vectorization via SIMD: History

Year Registers Instruction Set
~1997 80-bit MMX  Integer SIMD (in x87 registers)
~1999 128-bit SSE1 SP FP SIMD (xMMO0-8)
~2001 128-bit SSE2 DP FP SIMD (xMMO0-8)
128-bit SSEx
~2010 256-bit AVX DP FP SIMD (yMMO-16)
~2012 512-bit (MIC)
~2014 512-1024-bit (Haswell)
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Vector Registers

| . SSE/AVX 128
Floating Point (FP)

) S
avxose

MIC-512
| I—

Zmm ymm xmm
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SIMD Instructions

« Loading
— movupd xmmO ... (SSE move unaligned packed double into 128-bit )
— vmovaps ymmO ... (AVX move aligned packed single into 256-bit)
« Operating
— vaddpd ymm1l ymm2 (AVX add packed double 256-bit)
— addsd (SSE Add scalar doubles — SSE, but NOT vector op!)
« KEY:
— v=AVX
— p, S = packed, scalar
— U, a = unaligned, aligned
— s, d = single, double
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AVX Instructions

« Optimal for 64-bit operation
« Uses Vex prefix (V)
— Extendable to 512-bit or 1024-bit SIMD
— Can Reference 3 or 4 reqisters
— New instructions, broadcast to registers, mask, permute, etc

 FMA (Fused Multiply Add) available soon (Haswell/AVX2)
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AVX Instructions

AVX 128-bit AVX 256-bit
VEX Prefix Vex Prefix
Legacy SIMD
Scalar Yes No
Vector Data Movement Yes Yes
Vector FP Yes Yes
Vector Int No No
Int No No
New Functionality
Permute (v) Yes Yes
Mask (v) Yes Yes
Broadcast (v) Yes Yes
Insert/Extract/Zero No Yes
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Speed

* True SIMD parallelism — typically 1 cycle per floating point
computation

— Exception: Slow operations like division, square roots
« Speedup (compared to no vector) proportional to vector width
— 128-bit SSE — 2x double, 4x single
— 256-bit AVX — 4x double, 8x single
— 512-bit MIC — 8x double, 16x single

« Hypothetical AVX example: 8 cores/CPU * 4 doubles/vector * 2.0
GHz = 64 Gflops/CPU DP

— Pipelining could make this even greater!
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Speed

« Clearly memory bandwidth is potential issue, we’ll explore this later
— Poor cache utilization, alignment, memory latency all detract from ideal
« SIMD is parallel, so Amdahl’s law is in effect!
— Serial/scalar portions of code or CPU are limiting factors
— Theoretical speedup is only a ceiling

8

0 .
: Yo vectorization

6
e -30%
4
2
0

Speedup

1 2 4 8 16
Vector width
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User Perspective

Let's take a step back — how can we leverage this power

* Program in assembly
— Ultimate performance potential, but only for the brave
* Program in intrinsics
— Step up from assembly, useful but risky
« Let the compiler figure it out
— Relatively “easy” for user, “challenging” for compiler
— Less expressive languages like C make compiler’s job more difficult
— Compiler may need some hand holding.
« Link to an optimized library that does the actual work
— e.g. Intel MKL, written by people who know all the tricks.
— Get benefits “for free” when running on supported platform
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Vector-aware coding

« Know what makes vectorizable at all
— “for” loops (in C) or “do” loops (in fortran) that meet certain constraints
* Know where vectorization will help
« Evaluate compiler output
— Is it really vectorizing where you think it should?
« Evaluate execution performance
— Compare to theoretical speedup
« Know data access patterns to maximize efficiency
« Implement fixes: directives, compilation flags, and code changes
— Remove constructs that make vectorization impossible/impractical

— Encourage/force vectorization when compiler doesn’t, but should
— Better memory access patterns
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Writing Vector Loops

« Basic requirements of vectorizable loops:

— Countable at runtime
* Number of loop iterations is known before loop executes
* No conditional termination (break statements)

— Have single control flow
* No Switch statements

» ‘if statements are allowable when they can be implemented as masked
assignments

— Must be the innermost loop if nested
« Compiler may reverse loop order as an optimization!
— No function calls

« Basic math is allowed: pow(), sqrt(), sin(), etc
« Some Inline functions allowed
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Conceptualizing Compiler Vectorization

« Think of vectorization in terms of loop unrolling

— Unroll N interactions of loop, where N elements of data array fit into
vector register

for (1=0; 1<N;1i++) {
ali]=b[i]+c[1i];

) Load b(i..1+3)
‘[]7 Load c(i..i+3)
Operate bt+c->a
for (i=0; i<N;i+=4) { Store a
al[i+0]=b[i+0]+c[1i+0];
alitl]=bli+l]+c[1i+1]; '2:]
ali+2]=b[i+2]+c[i+2];
ali+3]=b[1+3]+c[i+3];

}
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Compiling Vector loops

* Intel Compiler:

Vectorization starts at optimization level —-02

Will default to SSE instructions

Can embed SSE and AVX instructions in the same binary with —axAvVX
* Will run AVX on CPUs with AVX support, SSE otherwise

-vec-report=<n> for a vectorization report

GCC

Vectorization is disabled by default, regardless of optimization level
Need -ftree-vectorize flag, combined with optimization > -02
SSE by default, -mavx -march=corei7-avx for AVX
-ftree-vectorizer-verbose for avectorization report
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Lab: Simple Vectorization

In this lab you will

« Use the Intel and gcc compilers to create vectorized with non-
vectorized code

« Compare the performance of vectorized vs non-vectorized code

« Take an initial look at compiler vectorization reports
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Lab: Simple Vectorization

« Though contrived, observed vector performance increase was
almost close to ideal — almost 100% code in tight vectorizable loop

» Results for Sandy Bridge (Laptop):

-no-vec —0O3 .937s
-03 .242s
-0O3 -axAVX .125s
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Challenge: Loop Dependencies

* Vectorization changes the order of computation compared to
sequential case

« Compiler must be able to prove that vectorization will produce
correct result.

* Need to consider independence of unrolled loop operations —
depends on vector width

« Compiler performs dependency analysis
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Loop Dependencies: Read After Write

Consider the loop:
a= {0,1,2,3,4}

for( 1i=1; 1<N; 1++)
b ={5,6,7,8,9} ]

= al[i-1] + b[i];

Applying each operation sequentially:

a[l]=a0] +b[l] — a[1]=0+6 — a[1]=
a[2]=a[1]+b[2] — a[2]=6+7 — a[2]=13
a[3] = a[2] + b[3] — a[3]=13+8 — a[3] = 21
a[4] = a[3] + b[4] — a[4]=21+9 — a[4] =30

a={0, 6, 13, 21, 30}
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Loop Dependencies: Read After Write

Consider the loop:
a= {0,1,2,3,4}

for( 1i=1; 1<N; 1++)
b ={5,6,7,8,9} ]

= al[i-1] + b[i];

Applying each operation sequentially:

a[l] =a[0] + b[1l] — a[1]=0+6 — a[l]=
a;2; ia;1; + b2 — a;2; i6<+7/—> azzz i 13
a[3] =a[2] + b[3] — a[3] = 13<+/8}a_3_ = 21
a[4]=a[3]+b[4] — a[4]=21+9 — a[4] =30

a={0, 6, 13, 21, 30}
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Loop Dependencies: Read After Write

Now let’s try vector operations:
a= {0,1,2,3,4}

for( 1i=1; 1<N; 1++)
b ={5,6,7,8,9} ]

= al[i-1] + b[i];

Applying vector operations, i={1,2,3,4}.

afi-1] ={0,1,2,3} (load)

blij ={6,7,8,9} (load)

{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12} (operate)
ali] =46, 8, 10, 12} (store)

a=1{0,6,8,10,12} # {0, 6, 13, 21, 30} NOT VECTORIZABLE
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Loop Dependencies: Write after Read

Consider the loop:
a= {0,1,2,3,4}

for( 1=0; i<N; i++)
b ={5,6,7,8,9} ]

= al[i+l] + b[i];

Applying each operation sequentially:

a[0] = a[1] + b[0] — a[0]=1+5 — a[0]=6
a[1]=a[2] +b[1] — a[1]=2+6 — a[1]=8
a2l =a[3] +b[2] — a[2]=3+7 — a[2]=10
a[3] = a[4] + b[3] — a[3]=4+8 — a[3]=12

a=1{6,8,10, 12, 4
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Loop Dependencies: Write after Read

Now let’s try vector operations:
a= {0,1,2,3,4}

for( 1=0; i<N; i++)
b ={5,6,7,8,9} ]

= al[i+l] + b[i];

Applying vector operations, i={1,2,3,4}.

ali+1] ={1,2,3,4} (load)

blij ={5,6,7,8} (load)

{1,2,3,4} + {5,6,7,8} = {6, 8, 10, 12} (operate)
ali] =46, 8, 10, 12} (store)

a=1{0, 6, 8, 10, 12} = {0, 6, 8, 10, 12} VECTORIZABLE
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Loop Dependencies

« Read After Write for( 1=1; 1<N; 1++)
— Also called “flow” dependency ali]
— Variable written first, then read
— Not vectorizable

* Write after Read
— Also called “anti” dependency
— Variable read first, then written
— vectorizable

for( 1=0,; i<
ali] = a[i+l

T
—
|_l-
_|_
— +
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Loop Dependencies

* Read after Read

for( 1=0; 1<N; 1++
— Not really a dependency or( 1=0; 1 1t+)

— Vectorizable ali] = bl1s2] + cl1];
« Write after Write
— a.k.a “output” dependency
— Variable written, then re-written
— Not vectorizable
for( 1=0; 1<N; 1++)
ali%s2] = bl[1i] + c[1];
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Loop Dependencies: Aliasing

* In C, pointers can hide data dependencies!
— Memory regions they point to may overlap

* |s this safe?:

vold compute (double *a,
double *b, double *c) {
for (i=1; i<N; 1++) {
ali]=b[1i]+c[1];
}

}
— .. Not if we give it the arguments compute (a, a+l, c);

 Effectively, b is really a[i-1] — Read after Write dependency
« Compilers can usually cope, add bounds checking tests (overhead)
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Vectorization Reports

Shows which loops are or are not vectorized, and why
Intel: -vec-report=<n>

0: None

1: Lists vectorized loops

2. Lists loops not vectorized, with explanation

3: Outputs additional dependency information

4: Lists loops not vectorized, without explanation

5: Lists loops not vectorized, with dependency information

Reports are essential for determining where the compiler finds a
dependency

Compiler is conservative, you need to go back and verify that there
really is a dependency.
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Loop Dependencies: Vectorization Hints

« Compiler must prove there is no data dependency that will affect
correctness of result
« Sometimes, this is impossible
— e.g. unknown index offset, complicated use of pointers
* Intel compiler solution: IVDEP (lgnore Vector DEPendencies) hint.
— Tells compiler “Assume there are no dependencies”

subroutine

vecl (s1,M,N, x) void vecl (double sl,1int M,

int N,double *x) {

IDEC$ IVDEP

T gpré(lgrilgflng.!El’H) [1]=x[i+M]+s1;
x (1) = x(i+M) + sl or (1=U;1<N;1 x[1]1=x[1 s1;
end do

12/11/2012 www.cac.cornell.edu 31



g5|® Cornell University
@E) Center for Advanced Computing

Compiler hints affecting vectorization

« For Intel compiler only
« Affect whether loop is vectorized or not
* #pragma ivdep

— Assume no dependencies.

— Compiler may vectorize loops that it would otherwise think are not
vectorizable

« #pragma vector always
— Always vectorize if technically possible to do so.
— Overrides compiler’s decision to not vectorize based upon cost

e #pragma novector
— Do not vectorize
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Loop Dependencies: Language Constructs

« C99introduced ‘restrict’ keyword to language
— Instructs compiler to assume addresses will not overlap, ever
vold compute (double * restrict a,
double * restrict b, double * restrict c) {
for (i=1; 1i<N; 1i++) {
ali]=b[i]+c[1];
}

 May need compiler flags to use, e.g. -restrict, -std=c99
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Lab: Vector hinting and reports

* In this lab, we will use the Intel compiler to compile code that has a
vector dependency

« By analyzing the reports and adding #pragma statements, we will
see if we can get around the compiler's dependency analysis
checks, and what the effects are.
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Lab: Vector Hinting and Reports

« Multiple levels of vector reports can help diagnose potential issues

« Compilers (Intel) must be conservative when vectorizing loops.
User markup (e.g #pragma)

«  Sometimes this conservatism Is warranted.
— Can lead to incorrect results if we're not careful when we override!

« Domain of incorrect results can be influenced by vector width.

12/11/2012 www.cac.cornell.edu 35



5[ Cornell University

Center for Advanced Computing

Cache and Alighment

/1 X1 Y1
L2 X2 Y2
Z3 |=a™| X3 |+]| Y3

vl,y2,y3,..yn x1,x2,x3,..xn

n Xn Yn

I L L G- z1, z2, 23, ... zn
ymm2 ymmO ymml

« Optimal vectorization requires concerns beyond SIMD unit!
— Registers: Alignment of data on 128, 256 bit boundaries

— Cache: Cache is fast, memory is slow
— Memory: Sequential access much faster than random/strided
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Cache Utilization

 Loads/stores to L1 cache are fastest
e System memory Is very slow in comparison

e If vector units are starved for data, effectiveness is reduced
significantly!

Core - Cache N[ Memory h

4 FLOPS/CP | | 2/2 DP words/CP (LD/ST) |, | ~0.4 DP word/CP
8 FLOPS/CP T \4/2 DP words/CP (LD/ST)j ‘ \ (1600 DDR3, 1 channel, 3.0GHz Core)

— "Pipes” for Streaming Data to Cores —
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Strided access

» Fastest usage pattern is “stride 1”; perfectly sequential

« Best performance when CPU can load L1 cache from memory in
bulk, sequential manner
« Stride 1 constructs:
— lterating Structs of arrays vs arrays of structs

— Multi dimensional array:
* Fortran: stride 1 on “inner” dimension
e« C/C++: Stride 1 on “outer” dimension

do j = 1,n; do i=1,n for (j=0;j<n;j++)
a(i,j)=b(i,j)*s for (i=0;i<n;i++)
enddo; endo aljll[i]l=b[j]l[i]*s;
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Strld Ed aCCess Memory Strided Add* Performance
__ 04
- B 0.35
* Striding through memory g o5 /’/o
reduces effective memory % 0.25 —*
. S o2 g
bandwidth! S 15 — /,/
_ _atri 0 o1 -
For DP, roughly 1-stride/8 %005 of

o

 Worse than non-aligned
access. Lots of memory Stride
operations to populate a
cache line, vector register
*do 1 = 1,4000000*1istride, istride
a(i) = b(i) + c(i) * sfactor
enddo
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« Consider our simple unrolling example
— Unroll N interactions of loop
— Convert to load/operate/store vector instructions
for (i=0; 1i<N;i++) { V = AV X

alil=b[1]+c[1]; U = unaligned
P = packed (vector)

@ D = double

vmovapd [next a bytes] xmmO vmovupd [next a bytes] ymmO
vmovapd [next c bytes] xmml vmovupd [next ¢ bytes] ymml
vaddpd xmm0O, xmml vaddpd ymm0O, ymml

vmovapd xmmml [next a bytes] vmovupd ymmml [next a bytes]
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Cache and Alighment

L1 Data Cache

vmovupd seoe
Cache Line 1A 11

Cache Line 2A Cache Lin e 128A

T 111 T

|
AVX |

vaddpd e AR | I
|

Cache Line 1D I I

Cache Line 2D Cache Lin e 128D

T 111

« Vector load instructions move multiple
values from cache into registers
simultaneously.

 [Fastest when entire cache line moved
as one unit, i.e. aligned
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Instructigns
| | Cache Line

s o8 s 464-bit DP FP
LI T 11 1256-bit Register
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A|ignment Load 4 DP Words

32-byte (AVX)
aligned

Load 4 DP Words

registers

Load 4 DP Words

Non-aligned Load 4 DP Words
% Load 4 DP Words

(7))
S
()]
]
A2
(@)
(D)
| -
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Alignment

« Applies especially to arrays, structs

— Iterating through multi-dimensional arrays may affect alignment if
colums/rows are not a multiple of cache line length.

« Solution: use padding and adapt your algorithm
« Alignment boundary depends on processor architecture
— Westmere, Opteron (Lonestar, Ranger): 16 byte
— Sandy Bridge (Stampede): 32 byte
— MIC (Stampede): 64 byte
« Compilers are great at automatically handling alignment
— Harder to determine if they're successful, though
— May notice alignment issues through decreased performance
— Glance at assembly, look for unaligned instructions in tight loops (e.qg.
movu.., Vmovu..
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Manual Alignment

« For Intel, compiler directives can force compiler to assume correct
alignment

— #pragma vector align asserts that data in the loop is aligned to the
appropriate boundary

— Be careful with SSE — can segfault if you're wrong!
« Can add alignment attributes when declaring variables to guarantee
they’re aligned

— Usually the compiler already accounts for this if all references are in the
same file, or multiple files are compiled with -ipo

— _declspec(align(16, 8)) for Intel, __ attribute _ ((aligned(16))) for gcc

« Can force dynamic memory allocation to be aligned
— With Intel compiler, use _mm_malloc or _mm_free
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Diagnosing Cache and Memory deficiencies

« Obviously bad stride patterns may prevent vectorization at all:
— In vector report: "vectorization possible but seems inefficient"

« Otherwise, may be difficult to detect

— No obvious assembly instructions, other than a proliferation of loads and
stores

— Vectorization performance farther away from ideal than expected
« Profiling tools can help

— PerfExpert (available at TACC)

— Visualize CPU cycle waste spent in data access (L1 cache miss, TLB
misses, etc)
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Lab: Using Profilers and analyzing instructions

* Quick introduction to PerfExpert profiling tool to analyze data access
patterns

* Look at assembly code to determine if vectorized and/or aligned.
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Conclusion

OpenMP and Vectorization are synergistic.

— Need to use all cores, keep vector units on each core busy to achieve
peak FLOPs on CPUs or MIC coprocessors.

* Vectorization occurs in tight loops “automatically” by the compiler

* Need to know where vectorization should occur, and verify that
compiler is doing that.

* Need to know if a compiler’s failure to vectorize is legitimate
— Fix code if so, use #pragma if not

* Need to be aware of caching and data access issues
— Very fast vector units need to be well fed.
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