
Introduction to Parallel Programming

Linda Woodard

woodard@cac.cornell.edu

 May 16, 2012

5/15/2012 www.cac.cornell.edu 1

mailto:woodard@cac.cornell.edu

What is Parallel Programming?

Using more than one processor or computer to complete a task

– Each processor works on its section of the problem (functional parallelism)

– Each processor works on its section of the data (data parallelism)

– Processors can exchange information

5/15/2012 www.cac.cornell.edu 2

Grid of Problem to be solved

CPU #1 works on this area

of the problem

CPU #3 works on this area

of the problem

 CPU #4 works on this area

of the problem

 CPU #2 works on this area

of the problem

y

x

Why Do Parallel Programming?

• Limits of single CPU computing

 – performance

 – available memory

• Parallel computing allows one to:

 – solve problems that don’t fit on a single CPU

 – solve problems that can’t be solved in a reasonable time

• We can solve…

 – larger problems

 – faster

 – more cases

5/15/2012 www.cac.cornell.edu 3

4

Finite Element Analysis

Protein Folding Fluid Dynamics Gene Sequencing

Climate Modeling Social Media Networks

Terminology (1)

• serial code is a single thread of execution working on a single data item at any

one time

• parallel code has more than one thing happening at a time. This could be

 – A single thread of execution operating on multiple data items simultaneously

 – Multiple threads of execution in a single executable

 – Multiple executables all working on the same problem

 – Any combination of the above

• task is the name we use for an instance of an executable. Each task has its own

virtual address space and may have multiple threads.

5/15/2012 www.cac.cornell.edu 5

Terminology (2)

• node: a discrete unit of a computer system that typically runs its own instance

of the operating system

• core: a processing unit on a computer chip that is able to support a thread of

execution; can refer either to a single core or to all of the cores on a particular

chip

• cluster: a collection of machines or nodes that function in someway as a single

resource.

• grid: the software stack designed to handle the technical and social challenges

of sharing resources across networking and institutional boundaries. grid also

applies to the groups that have reached agreements to share their resources.

5/15/2012 www.cac.cornell.edu 6

7

Types of Parallelism

8

Data Parallelism
Definition: each process does the same work on unique and

independent pieces of data

Examples:

 2 brothers mow the lawn

 8 farmers paint a barn

C

B

A

B B

• Usually more scalable than functional parallelism

• Can be programmed at a high level with OpenMP,

or at a lower level using a message-passing library

like MPI.

9

Definition: each process performs a different "function" or execute a

different code sections that are independent.

Examples:

 2 brothers do yard work (1 edges & 1 mows)

 8 farmers build a barn

A

B C D

E

Functional Parallelism

• Commonly programmed with message-

passing libraries

10

Task Parallelism

Definition: each process perform the same functions but do not

communicate with each other, only with a “Master” Process. These

are often called “Embarrassingly Parallel”.

Examples:

 Independent Monte Carlo Simulations

 ATM Transactions

A

B C D

11

Pipeline Parallelism
Definition: each Stage works on a part of a solution. The output of one

stage is the input of the next. (Note: This works best when each
stage takes the same amount of time to complete)

Examples: Assembly lines, Computing partial sums

A

B

C

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

i

i

i

i

i+1 i+2 i+3 i+4 i+5 i+6

i+1 i+2

i+1

i+3

i+2

i+1

i+4

i+3

i+2

i+5

i+4

i+3

i+6

i+5

i+4

i+6

i+5 i+6

Is it really worth it to go Parallel?

• Writing effective parallel applications is difficult!!

 – Load balance is important

 – Communication can limit parallel efficiency

 – Serial time can dominate

• Is it worth your time to rewrite your application?

– Do the CPU requirements justify parallelization? Is your problem really `large’?

– Is there a library that does what you need (parallel FFT, linear system solving)

– Will the code be used more than once?

5/15/2012 www.cac.cornell.edu 12

Theoretical Upper Limits to Performance

• All parallel programs contain:

– parallel sections (we hope!)

– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness

 serial portion parallel portion

 1 task

 2 tasks

 4 tasks

• Amdahl’s Law states this formally

5/15/2012 www.cac.cornell.edu 13

Amdahl’s Law

• Amdahl’s Law places a strict limit on the speedup that can be
realized by using multiple processors.

– Effect of multiple processors on run time

 t n = (f p / N + f s)t 1

– Where

• fs = serial fraction of code

• fp = parallel fraction of code

• N = number of processors

• t 1 = time to run on one processor

5/15/2012 www.cac.cornell.edu 14

Limit Cases of Amdahl’s Law

• Speed up formula:

 S = 1 / (fs + fp / N)

Where

• fs = serial fraction of code

• fp = parallel fraction of code

• N = number of processors

Case:

1. fs = 0, fp = 1, then S = N

2. N  infinity: S = 1/fs; if 10% of the code is sequential, you will never
speed up by more than 10, no matter the number of processors.

5/15/2012 www.cac.cornell.edu 15

More Terminology

• synchronization: the temporal coordination of parallel tasks. It involves

waiting until two or more tasks reach a specified point (a sync point) before

continuing any of the tasks.

• parallel overhead: the amount of time required to coordinate parallel tasks,

as opposed to doing useful work, including time to start and terminate tasks,

communication, move data.

• granularity: a measure of the ratio of the amount of computation done in a

parallel task to the amount of communication.

 – fine-grained (very little computation per communication-byte)

 – coarse-grained (extensive computation per communication-byte).

5/15/2012 www.cac.cornell.edu 16

Practical Limits: Amdahl’s Law vs. Reality

• Amdahl’s Law shows a theoretical upper limit for speedup

• In reality, the situation is even worse than predicted by Amdahl’s Law due to:

 – Load balancing (waiting)

 – Scheduling (shared processors or memory)

 – Communications

 – I/O

5/15/2012 www.cac.cornell.edu 17

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

Number of processors

Amdahl's Law

Reality

fp = 0.99

S

p

e

e

d

u

p

18

High Performance Computing

Architectures

19

HPC Systems Continue to Evolve Over Time…

Centralized Big-Iron

Decentralized collections

Mainframes

Mini Computers

PCs

RISC Workstations

RISC MPPS

Specialized

Parallel Computers

Clusters Grids + Clusters

1970 1980 1990 2000

NOWS

20

Cluster Computing Environment

…

Login

Node(s)

Access

Control

Compute Nodes

File

Server(s)

• Login Nodes

• File servers & Scratch Space

• Compute Nodes

• Batch Schedulers

21

Flynn’s Taxonomy
 Classification Scheme for Parallel Computers

SISD SIMD

MIMD MISD

Single

S
in

g
le

Multiple

M
u

lt
ip

le

In
s

tr
u

c
ti

o
n

 S
tr

e
a

m

Data Stream

Types of Parallel Computers (Memory Model)

• Nearly all parallel machines these days are multiple instruction, multiple

data (MIMD)

• A much more useful way to classify modern parallel computers is by their

memory model

– shared memory

– distributed memory

5/15/2012 www.cac.cornell.edu 22

Shared and Distributed Memory Models

5/15/2012 www.cac.cornell.edu 23

Shared memory: single address space. All

processors have access to a pool of shared

memory; easy to build and program, good

price-performance for small numbers of

processors; predictable performance due to

UMA .(example: SGI Altix)

Methods of memory access :

 - Bus

 - Crossbar

Distributed memory: each processor

has its own local memory. Must do

message passing to exchange data

between processors. cc-NUMA enables

larger number of processors and shared

memory address space than SMPs; still

easy to program, but harder and more

expensive to build. (example: Clusters)

Methods of memory access :

 - various topological interconnects

Network

P

M

P P P P P

M M M M M

Memory

Bus

P P P P P P

Ranger

5/15/2012 www.cac.cornell.edu 24

Shared Memory vs. Distributed Memory

• Tools can be developed to make any system appear to look like a

different kind of system

– distributed memory systems can be programmed as if they have shared

memory, and vice versa

– such tools do not produce the most efficient code, but might enable

portability

• HOWEVER, the most natural way to program any machine is to use

tools and languages that express the algorithm explicitly for the

architecture.

5/15/2012 www.cac.cornell.edu 25

Programming Parallel Computers

5/15/2012 www.cac.cornell.edu 26

• Programming single-processor systems is (relatively) easy because

they have a single thread of execution and a single address space.

• Programming shared memory systems can benefit from the single

address space

• Programming distributed memory systems is the most difficult due to

multiple address spaces and need to access remote data

• Both shared memory and distributed memory parallel computers can

be programmed in a data parallel, SIMD fashion and they also can

perform independent operations on different data (MIMD) and

implement task parallelism.

Single Program, Multiple Data (SPMD)

SPMD: dominant programming model for shared and distributed

memory machines.

– One source code is written

– Code can have conditional execution based on which processor is

executing the copy

– All copies of code are started simultaneously and communicate and

sync with each other periodically

5/15/2012 www.cac.cornell.edu 27

SPMD Programming Model

5/15/2012 www.cac.cornell.edu 28

Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c

Shared Memory Programming: OpenMP

• Shared memory systems (SMPs and cc-NUMAs) have a single

address space:

– applications can be developed in which loop iterations (with no

dependencies) are executed by different processors

– shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes

– OpenMP is the new standard for shared memory programming

(compiler directives)

– Vendors offer native compiler directives

5/15/2012 www.cac.cornell.edu 29

Distributed Memory Programming: MPI

 Distributed memory systems have separate address spaces for

each processor

– Local memory accessed faster than remote memory

– Data must be manually decomposed

– MPI is the standard for distributed memory programming (library of

subprogram calls)

5/15/2012 www.cac.cornell.edu 30

Programming Multi-tiered Systems

• Systems with multiple shared memory nodes are becoming common

for reasons of economics and engineering.

• Memory is shared at the node level, distributed above that:

– Applications can be written using OpenMP + MPI

– Developing apps with only MPI usually possible

5/15/2012 www.cac.cornell.edu 31

32

Questions?

