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Components

 OpenMP (shared memory)
— Parallel programming on a single node

« MPI (distributed memory)
— Parallel computing running on multiple nodes

 OpenMP + MPI (hybrid computing)
— Combine to maximize use of HPC systems
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What is OpenMP?

 OpenMP is an acronym for Open Multi-Processing

* An Application Programming Interface (API) for
developing parallel programs in shared-memory architectures

* Three primary components of the API are:

— Compiler Directives

— Runtime Library Routines

— Environment Variables
« De facto standard -- specified for C, C++, and FORTRAN
« http://www.openmp.org/ has the specification, examples, tutorials and documentation
* OpenMP 4.5 specified November 2015
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OpenMP = Multithreading

« All about executing concurrent work (tasks)
— Tasks execute as independent threads
— Threads access the same shared memory (no message passing!)
— Threads synchronize only at barriers

« Simplest way to do multithreading — run tasks on multiple cores/units
— Insert OpenMP parallel directives to create tasks for concurrent threads
— So, shared-memory parallel programming is super-easy with OpenMP?
— Nope! Updates to a shared variable, e.g., need special treatment...

// repetitive work: OK // repetitive updates: oops
#pragma omp parallel for #pragma omp parallel for
for (i=0; i<N; i++) for (i1=0; i<N; i++)

a[i] = b[i] + c[1i]; sum = sum + b[i]*c[i];
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Role of the Compiler

 OpenMP relies on the compiler to do the multithreading
— Compiler recognizes OpenMP directives, builds in appropriate code
« A special flag is generally required to enable OpenMP
— GNU: gcc -fopenmp
— Intel: icc -openmp
« On the Stampede 2 login node, extra flags may be required for KNL
— Tell the Intel compiler to use MIC-only instructions: -xMIC-AVX512
— Putting it all together, e.g.: icc —openmp -xMIC-AVX512
— Must do multithreading to make full use of the Xeon Phi!
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OpenMP Fork-Join Parallelism

* Programs begin as a single process: master thread

« Master thread executes until a parallel region is encountered
— Master thread creates (forks) a team of parallel threads
— Threads in team simultaneously execute tasks in the parallel region
— Team threads synchronize and sleep (join); master continues

execution @

S
4 threads \/ 4 threads
e.g.,

4-thread

execution Master Thread Multi-Threaded
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_ _ LAB: OMP Hello World
Parallel Region: C/C++ (saw already in intro lab)
1 |#pragma omp parallel
2 { code block
3 a = work(...);
4 }
Line 1 Team of threads is formed at parallel region

Lines 2—3 Each thread executes code block and subroutine call, no
branching into or out of a parallel region

Line 4 All threads synchronize at end of parallel region (implied
barrier)
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OpenMP on Shared Memory Systems

Software Model:
Threads in
| Parallel Region

Hardware Model:
Multiple Cores

Thread Thread Thread Thread
1 2 a.out 0 1 2 M-1

Thread Thread Thread Thread
M M+1 M+2 2M-1

= accessible by
all threads

= private memory

for thread x
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OpenMP Directives

* OpenMP directives are comments in source code that specify parallelism for shared-memory
parallel (SMP) machines

« FORTRAN compiler directives begin with one of the sentinels
I SOMP, C$SOMP, or *$SOMP — use ! SOMP for free-format F90

« C/C++ compiler directives begin with the sentinel #pragma omp

Fortran 90 C/C++
1SOMP parallel #pragma omp parallel
... {...
1SOMP end parallel }
1SOMP parallel do #pragma omp parallel for
DO ... for(...){...
ISOMP end parallel do }
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OpenMP Syntax

 OpenMP Directives: Sentinel, construct, and clauses

#pragma omp construct [clause [[,]Jclause]...] C
« Example
#pragma omp parallel private(i) reduction(+:sum) C

« Most OpenMP constructs apply to a “structured block”, that is, a block of one or more
statements with one point of entry at the top and one point of exit at the bottom.
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Worksharing Loop: C/C++

General form:

1 |#pragma omp parallel for | #ipragma omp parallel

2 for (i=0; i<N; i++) {

3| { #pragma omp for

4 al[i] = b[i] + c[i]; for (i=0; i<N; i++)

S| } {a[i1] = b[i] + c[i];}
6 }

Line 1 Team of threads formed (parallel region).

Lines 2—6 Loop iterations are split among threads.
Implied barrier at end of block(s) {}.

Each loop iteration must be independent of other iterations

(at a minimum, compiler will complain and your loop won’t be
1/23/2017 parallelized). www.cac.cornell.edu 11
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OpenMP Clauses

« Directives dictate what the OpenMP thread team will do

— Parallel regions are marked by the parallel directive
— Worksharing loops are marked by do, for directives (Fortran, C/C++)

« Clauses control the behavior of any particular OpenMP directive
1. Scoping of variables: private, shared, default

Initialization of variables: copyin, firstprivate

Scheduling: static, dynamic, guided

Conditional application: i f

Number of threads in team: num threads

a s~ wbd
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lllustration of a Race Condition

Intended Possible...
-- | Thread 0 | | Thread 1 | | Value_
read 0

increment 0 read — 0

write — 1 increment read — 0
read <« 1 write — increment 1

increment 1 write — 1

write — 2 1

* |n a critical section, need mutual exclusion (mutex) to get intended result
— Only use when needed; incurs a performance penalty due to serial execution

« The following OpenMP directives prevent this race condition:

#pragma omp critical — for a code block (C/C++)
#pragma omp atomic — for single statements
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OpenMP Reduction

« Recall previous example of parallel dot product
— Simple parallel-for doesn’t work due to race condition on shared sum

— Best solution is to apply OpenMP’s reduction clause
— Doing private partial sums is fine too; add a critical section for sum of ps

1/23/2017

// repetitive updates: oops
#pragma omp parallel for

for (i=0; i<N; i++)
sum = sum + b[i]*c[i];

// repetitive reduction: OK

#pragma omp parallel for \
reduction (+:sum)

for (i=0; i<N; i++)
sum = sum + b[i]*c[i];

// repetitive updates: OK

int ps = 0;
#pragma omp parallel \
firstprivate (ps)

{
#pragma omp for

for (i=0; i<N; i++)
ps = ps + b[i]*c[i];

#pragma omp critical
sum = sum + ps; }

www.cac.cornell.edu
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Runtime Library Functions

omp_get num _ threads () Number of threads in current team

omp get thread num/() Thread ID, {0: N-1}

omp get max threads() Number of threads in environment,
OMP_NUM THREADS

omp _get num procs() Number of machine CPUs

omp in parallel () True if in parallel region & multiple threads

are executing

omp_set num threads (#) | Changes number of threads for parallel
region, if dynamic threading is enabled
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Environment Variables, More Functions

1/23/2017

« To control the OpenMP runtime environment

OMP_NUM THREADS

Set to permitted number of threads: this is the
value returned by omp get max threads ()

OMP DYNAMIC

TRUE/FALSE for enable/disable dynamic
threading by calling omp set num threads

(can also use a function to do this).

www.cac.cornell.edu
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Loop Nesting in 3.0

: ' Nested Parallel Region Serial
execution ® SEiEl ® J

Master Thread

* OpenMP 3.0 supports nested parallelism, older implementations
may ignore the nesting and serialize inner parallel regions.

« A nested parallel region can specify any number of threads to be
used for the thread team, new id’s are assigned.
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MPI. Message Passing

Overview

Basics
— Hello World in MPI

— Compiling and running MPI programs (LAB)

MPI messages

Point-to-point communication
— Deadlock and how to avoid it (LAB)

Collective communication

1/23/2017
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Overview Introduction

 What is message passing?
— Sending and receiving messages between tasks or processes

— Includes performing operations on data in transit and synchronizing
tasks

 Why send messages?

— Clusters have distributed memory, i.e. each process has its own
address space and no way to get at another’s

 How do you send messages?
— Programmer makes use of an Application Programming Interface (API)
— In this case, MPI.
— MPI specifies the functionality of high-level communication routines

— MPI’s functions give access to a low-level implementation that takes
care of sockets, buffering, data copying, message routing, etc.
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Overview API for Distributed Memory Parallelism

« Assumption: processes do not see each other’'s memory
— Some systems overcome this assumption
* GAS (Global Address Space) abstraction and variants
« Communication speed is determined by some kind of
network

— Typical network = switch + cables + adapters + software
stack...

« Key: the implementation of MPI (or any message passing
API) can be optimized for any given network
— Expert-level performance
— No code changes required
— Works in shared memory, too

Image of Dell PowerEdge C8220X: http://www.theregister.co.uk/2012/09/19/dell_zeus_c8000_hyperscale_server/
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Overview Why Use MPI?

MPI is a de facto standard for distributed memory computing
— Public domain versions are easy to install
— Vendor-optimized version are available on most hardware

« MPI is “tried and true’
— MPI-1 was released in 1994, MPI-2 in 1996, and MPI-3 in 2012.

* MPI applications can be fairly portable
 MPIis a good way to learn parallel programming

 MPI is expressive: it can be used for many different models of computation, therefore can be
used with many different applications

« MPI code is efficient (though some think of it as the “assembly language of parallel
processing”)

« MPI has freely available implementations (e.g., MPICH, OpenMPI)
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MPI and Single Program, Multiple Data (SPMD)

— One source code is written
— Same program runs multiple times, but each time with different data

— With MPI
» Code can have conditional execution based on which processor is executing the copy: choose data
 All copies of code are started simultaneously and may communicate and sync with each other periodically
» Conclusion: MPI allows more SPMD programs than embarrassingly parallel applications
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SPMD Programming Model

1/23/2017

Processor O

source.c =» a.out (compiled)

Processor 1

Processor 2

www.cac.cornell.edu

Processor 3
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Basics Simple MPI

Here is the basic outline of a simple MPI program :

* Include the implementation-specific header file —
#include <mpi.h> inserts basic definitions and types
« Initialize communications —

MPI_Init initializes the MPI environment
MPI_Comm_size returns the number of processes
MPI_Comm_rank returns this process’s number (rank)

« Communicate to share data between processes —

MPI_Send sends a message
MPI_Recv receives a message

« Exit from the message-passing system —
MPI_Finalize

1/23/2017 www.cac.cornell.edu 24
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Basics Minimal Code Example: hello_mpi.c

#include <stdio.h>
#include <string.h>
#include <mpi.h>
main (int argc, char **argv)
{
char message[20];
int i, rank, size, tag = 99;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm size (MPI COMM WORLD, &size);
MPI Comm rank (MPI COMM WORLD, &rank);

if (rank == 0) {
strcpy (message, "Hello, world!");
for (1 = 1; i < size; 1i++)
MPI Send(message, 13, MPI CHAR, i, tag, MPI COMM WORLD) ;
} else {

MPI Recv (message, 20, MPI CHAR, 0, tag, MPI COMM WORLD, é&status);
}

printf ("Message from process %d : %.13s\n", rank, message);
MPI Finalize();
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Basics Initialize and Close Environment

Initialize MPI environment

An implementation may also
use this call as a mechanism
for making the usual argc and
argv command-line arguments
. from “main” available to all
MPI_Init

- tasks (C language only).

Close MPI environment

MPI_Finalize
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Basics Query Environment

Returns number of processes
This, like nearly all other MPI
functions, must be called after
MPI_Init and before MPI_Finalize.
Input is the name of a communicator
(MPI_COMM_WORLD is the global
MPI_Comm_size communicator) and output is the size
MPI_Comm_rank of that communicator.

Returns this process’ number, or rank
Input is again the name of a
communicator and the output is the rank
of this process in that communicator.
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Basics Pass Messages

Send a message
Blocking send of data in the buffer.

Receive a message
Blocking receive of data into the buffer.

MPI_Send

MPI_Recv
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Basics Compiling MPI Programs

* Generally, one uses a special compiler or wrapper script
— Not defined by the standard
— Consult your implementation
— Correctly handles include path, library path, and libraries
 On Stampede 2, use MPICH-style wrappers (the most common)
mpicc -o foo foo.c
mpicxx -o foo foo.cc
mpif90 -o foo foo.f (also mpif77)
— Choose compiler+MPI with “module load” (default, Intel17+Intel MPI)

1/23/2017 www.cac.cornell.edu
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Running MPI Programs

To run a simple MPI program, use MPICH-style commands
(Can’t do this on login nodes!)
mpirun -n 4 ./foo (usually mpirun is just a soft link to...)
mpiexec -n 4 ./foo
Some options for running
-n -- states the number of MPI processes to launch
-wdir <dirname> -- starts in the given working directory
--help -- shows all options for mpirun
To run over Stampede 2’s Omni-Path (as part of a batch script)
ibrun ./foo (Can'’t do this on login nodes either!)
ibrun -help ### This is OK!
— The scheduler handles the rest

Note: mpirun, mpiexec, and compiler wrappers are not part of MPI,
but they can be found in nearly all implementations

www.cac.cornell.edu
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Basics Creating an MPI Batch Script

 To submit a job to the compute nodes on Stampede, you must first create a SLURM batch
script with the commands you want to run.

#!/bin/bash

#SBATCH -J myMPI
#SBATCH -0 myMPI.o%j
#SBATCH -e myMPI.err$%j
#SBATCH -N 1

#SBATCH -n 16

#SBATCH -p normal
#SBATCH -t 00:01:00
#SBATCH -A TG-TRA140011

job name

output file (%j = jobID)

Direct error to the error file

number of nodes requested

number of MPI (total) tasks requested
queue (partition)

run time (hh:mm:ss)

dE FH d dE S dk gk &k

account number

echo 2000 > input
ibrun ./myprog < input # run MPI executable "myprog"
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Basics LAB: Submitting MPI Programs

« Obtain the hello_mpi.c source code:

cd IntroMPI_lab/hello

« Compile the code using mpicc to output the
executable hello_mpi
* Modify the myMPIl.sh batch script to run hello_mpi
— Do you really need the “echo” command, e.g.?
— (see myMPI_solution.sh for corrections)

« Submit the batch script to SLURM, the batch

scheduler | | sbatch --reservation=CAC2 -p normal myMPI.sh
— Check on progress until the job completes | # see myMPI solution.sh for hints

— Examine the output file squeue -u <my username>
less myMPI.o*
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Messages Three Parameters Describe the Data

MPI_Send(

MPI_Recv(

message, 13, MPI_CHAR, |i, tag, MPI_COMM_WORLD );

message, 20, MPI_CHAR, |0, tag, MPI_COMM_WORLD, &status);
I \

Type of data, should be same
for send and receive
MPI_Datatype type

Number of elements (items, not bytes)
Recv number should be greater than or
equal to amount sent

int count

Address where the data start
void* data

www.cac.cornell.edu
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Messages Three Parameters Specify Routing
MPI_Send( message, 13, MP|_CHAR, |i, tag, MPI_ COMM_WORLD )

MPI_Recv( message, 20, MPI_CHAR, |0, tag, MPI_COMM_WORLD, &status);
/

l
|dentify process you're /
communicating with by rank number

int dest/src

Arbitrary tag number, must match up

(receiver can specify MPI_ANY_TAG to
indicate that any tag is acceptable)

int tag
Communicator specified for send and Returns information
receive must match, no wildcards on received message
MPI_Comm comm MPI|_Status* status
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Messages Fortran Notes

mpi send (data, count, type, dest, tag, comm, ierr)
mpi recv (data, count, type, src, tag, comm, status, ierr)

« A few Fortran particulars
— All Fortran arguments are passed by reference
— INTEGER ierr: variable to store the error code (in C/C++ this is the return value of the function call)

* Wildcards are allowed in C and Fortran
— src can be the wildcard MPlI_ANY_SOURCE
— tag can be the wildcard MPI_ANY_TAG
— status returns information on the source and tag
— Receiver might check status when wildcards are used, e.g., to check sender rank
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Point to Point Topics

 MPI_Send and MPI_Recv: how simple are they really?

* Blocking vs. non-blocking send and receive

« Ways to specify synchronous or asynchronous communication
« Reducing overhead: ready mode, standard mode

« Combined send/receive

« Deadlock, and how to avoid it
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Point to Point Blocking vs. Non-Blocking

MPI1_Send, MPI_Recv

A blocking call suspends execution of the process until the message buffer being sent/received
IS safe to use.

MPI_Isend, MPI_lrecv

A non-blocking call just initiates communication; the status of data transfer and the success of
the communication must be verified later by the programmer (MPI_Wait or MPI1_Test).
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Point to Point Send and Recv: So Many Choices

The communication mode indicates how the message should be sent.

Communication Blocking Routines Non-Blocking Routines
Mode
Synchronous MPI_Ssend MPI_Issend
Ready MPI_Rsend MPI_Irsend
Buffered MPI_Bsend MPI_Ibsend
Standard MPI_Send MPI_Isend
MPI_Recv MPI _Irecv

MPI_Sendrecv
MPI_Sendrecv_replace

Note: the receive routine does not specify the communication mode -- it is simply blocking or
non-blocking.
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Point to Point MPI_Sendrecv

MPI Sendrecv (sendbuf, sendcount, sendtype,dest, sendtag,
recvbuf,6 recvcount, recvtype, source, recvtag,
comm, status)

« Good for two-way communication between a pair of nodes, in which each one sends and
receives a message

« However, destination and source need not be the same (ring, e.g.)
« Equivalent to blocking send + blocking receive
« Send and receive use the same communicator but have distinct tags
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Point to Point Two-Way Communication: Deadlock!

e Deadlock 1

IF (rank==0) THEN
CALL MPI RECV (recvbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, status, ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, ie)

ELSEIF (rank==1) THEN
CALL MPI RECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 0, tag, MPI COMM WORLD, ie)

ENDIF

« Deadlock 2

IF (rank==0) THEN

CALL MPI SSEND (sendbuf, count ,MPI REAL, 1,taqg, MPI COMM WORLD, ie)

CALL MPI RECV (recvbuf,count,MPI REAL,1,tag,MPI COMM WORLD,status, ie)
ELSEIF (rank==1) THEN

CALL MPI SSEND (sendbuf, count ,MPI REAL, 0, tag, MPI COMM WORLD, ie)

CALL MPI RECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
ENDIF

— MPI_Send has same problem for count*MPI_REAL > 12K
(the MVAPICHZ2 “eager threshold”; it's 256K for Intel MPI)
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Basics LAB: Deadlock

 cdto IntroMPI lab/deadlock
« Compile the C or Fortran code to output the executable deadlock
« Create a batch script including no #SBATCH parameters:

cat > sr.sh
#'!'/bin/sh
ibrun ./deadlock [ctrl-D to exit cat]

« Submit the job, specifying parameters on the command line

sbatch -N 1 -n 8 --reservation=CAC2 -p normal -t 00:00:30 -A TG-TRA140011 sr.sh

« Check job progress with squeue; check output with less.

* The program will not end normally. Edit the source code to eliminate deadlock (e.g., use
sendrecv) and resubmit until the output is good.
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Point to Point Deadlock Solutions

« Solution 1
IF (rank==0) THEN
CALL MPI_ SEND (sendbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, ie)
CALL MPI RECV (recvbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, status, ie)
ELSEIF (rank==1) THEN
CALL MPI RECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 0, tag, MPI COMM WORLD, ie)
ENDIF

« Solution 2
IF (rank==0) THEN
CALL MPI SENDRECV (sendbuf,count,MPI REAL,1,tag, &
recvbuf,count,MPI REAL, 1, tag,MPI COMM WORLD,status, ie)
ELSEIF (rank==1) THEN
CALL MPI SENDRECV (sendbuf, count yMPI REAL, 0,tag, &
recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
ENDIF
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Point to Point More Deadlock Solutions

e Solution 3
IF (rank==0) THEN
CALL MPI IRECV (recvbuf,count,MPI REAL,1l,tag,MPI COMM WORLD, req,ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, ie)
ELSEIF (rank==1) THEN
CALL MPI IRECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD, req,ie)
CALL MPI_SEND (sendbuf,count,MPI REAL,O0,tag,MPI_COMM WORLD,ie)
ENDIF
CALL MPI WAIT (req,status)

e Solution 4

IF (rank==0) THEN

CALL MPI BSEND (sendbuf, count ,MPI REAL, 1,taqg, MPI COMM WORLD, ie)

CALL MPI RECV (recvbuf,count,MPI REAL,1,tag,MPI COMM WORLD,status, ie)
ELSEIF (rank==1) THEN

CALL MPI BSEND (sendbuf, count ,MPI REAL, 0, tag, MPI COMM WORLD, ie)

CALL MPI RECV(recvbuf,count,MPI REAL,0,tag,MPI COMM WORLD, status,ie)
ENDIF

1/23/2017 www.cac.cornell.edu
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Point to Point Two-way Communications: Summary

Task O Task 1
Deadlock 1 Recv/Send Recv/Send
Deadlock 2 Send/Recv Send/Recv
Solution 1 Send/Recv Recv/Send
Solution 2 Sendrecv Sendrecv
Solution 3 Irecv/Send, Wait (recv/Send, (Wait)
Solution 4 Bsend/Recv (B)send/Recv

1/23/2017
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Collective Motivation

 What if one task wants to send to everyone?

if (mytid == 0) ({
for (tid=1; tid<ntids; tid++) {

MPI Send( (void*)a, /* target= */ tid, .. );
}
} else {
MPI Recv( (void*)a, 0, .. );

}

* Implements a very naive, serial broadcast
« Too primitive
— Leaves no room for the OS / switch to optimize
— Leaves no room for more efficient algorithms
 Too slow

1/23/2017 www.cac.cornell.edu
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Collective Overview

« Collective calls involve ALL processes within a communicator

 There are 3 basic types of collective communications:

— Synchronization (MPI_Batrrier)

— Data movement (MPI_Bcast/Scatter/Gather/Allgather/Alltoall)

— Collective computation/reduction (MP1_Reduce/Allreduce/Scan)
* Programming considerations & restrictions

— Blocking operation (also non-blocking in MPI-3)

— No use of message tag argument

— Collective operations within subsets of processes require separate grouping and new
communicator
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Collective Barrier Synchronization, Broadcast

« Barrier blocks until all processes in comm have called it
— Useful when measuring communication/computation time

mpi barrier (comm, ierr)

MPI Barrier (comm)

« Broadcast sends data from root to all processes in comm
— Again, blocks until all tasks have called it

mpi bcast(data, count, type, root, comm, ierr)
MPI Bcast(data, count, type, root, comm)

1/23/2017 www.cac.cornell.edu 47



Collective

1/23/2017

Cornell University
Center for Advanced Computing

 Broadcast

e Scatter/Gather

« Allgather

o Alltoall

Data Movement

PO | A

P2 |
P3 |

N

P1 | | | | | EBroadcast
N
I

—

| | Scatter

Pel | [ [ ]

P2| | | | | Cather
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Collective Reduction Operations
PO | A PO | ABGD
Reduce
 Reduce e — o
F2 |G P2
P3| D P3
FO|A FQ A
. Scan (Prefix) P18 Scan P1LAB
P2 | G = o[ ABC
P3| D P3| ABGD
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Collective Reduction Operations
Name Meaning
MPI_MAX Maximum
MPI_MIN Minimum
MPI1_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bit-wise and
MPI_LOR Logical or
MPI_BOR Bit-wise or
MPI_LXOR Logical xor
MPI_BXOR Logical xor
MPI_MAXLOC Max value and location
MPI_MINLOC Min value and location
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Hybrid Why use OpenMP and MPI?

 Try to exploit the whole shared/distributed memory hierarchy

« Memory is insufficient within one node
» Essential concept for KNL, need to take advantage of shared data within process

* Note: Each of Stampede 2's KNL nodes has 96GB of main memory
— Remember, MCDRAM (16GB) is used as cache by default.
 Torun 1 process (rank) per node, have sbatch -N x -n y, withx==y, e.q.:
« #SBATCH -N 64 # number of nodes requested
e #SBATCH -n 64 # number of MPI (total) tasks requested

1/23/2017 www.cac.cornell.edu
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Threading Example: One MPI, Many OpenMP

1/23/2017

C

#include <mpi.h>

int main(int argc,
char **argv) {

int rank, size, ie, 1i;

//Setup shared mem, comp/comm

#pragma omp parallel for
for (i=0; i<n; i++) {
<work>
}

// compute & communicate

}

www.cac.cornell.edu
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Some Programming Models for Intel MIC

e  OpenMP
— On Stampede 2, TACC expects that this is the most approachable programming model for HPC users
* Intel Threading Building Blocks (TBB)
— For C++ programmers
* Intel Cilk Plus
— Task-oriented add-ons for OpenMP
— Currently for C++ programmers, may become available for Fortran
* Intel Math Kernel Library (MKL)
— MKL is inherently parallelized with OpenMP
 CAF (Actor model) library
— Lightweight message passing
» (actors per thread instead of threads per task, as in Hybrid OpenMP+MPI)
— One API for distributed and shared memory programming
— Patrtially fault-tolerant (compare to MPI)
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References

e Standards

— OpenMP: http://www.openmp.org/specifications/
« All of v4 and most of v4.5 supported by Intel Compiler 17: https://software.intel.com/en-us/node/684308

— MPI: http://mpi-forum.org/docs/mpi-3.1/index.htm (Supported by Intel “17)
« CAC Virtual workshop: https://cvw.cac.cornell.edu/topics

— Covers MPI and OpenMP in more detail

— Corresponding Fortran examples

— More references!
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OpenMP Worksharing

Use OpenMP directives to specify worksharing
In a parallel region, as well as synchronization

#pragma omp parallel | code block Thread action
{ for Worksharing
¥pragma omp sections Worksharing
single One thread
master One thread
| } // end parallel critical One thread at a time
parallel do/for Directives can be combined,
parallel sections If a parallel region has just

one worksharing construct.
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OpenMP Parallel Directives

* Replicated — executed by all threads PARALLEL
« Worksharing - divided among threads . {codel}
do I = 1,N*4
PARALLEL DO {code2}
do I = 1,N*4 end do
PARALLEL {code} {code3}
{code} end do END PARALLEL
END PARALLEL END PARALLEL DO M
l l code1 code1 code1 code1
I=1,N  [=N#1,2N 1=2N+1,3N  1=3N+1,4N |=f;4 I=N112N |=2; 1,3N |=;; 1,4N
cofe code code code cod% co{e code c%e code2 code2 co ;2 cod;2
. _ code3 code3 code3 code3
Replicated Worksharing :
Combined
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OpenMP Constructs

OpenMP language

“extensions’
parallel Work- control of data synchron- runtime
control sharing one task access ization environment
* governs flow * distributes * assigns * specifies » coordinates * sets/gets environment
of control in work among work to a scoping of execution of
the program threads thread variables threads schedule
omp_set num threads()
do/for task shared critical omp_get thread num()
parallel sections directive private atomic OMP_NUM THREADS
directive single (OpenMP 3.0) reduction barrier OMP_SCHEDULE
directives clauses directives clause, API, env. variables
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Private, Shared Clauses

* In the following loop, each thread needs a private copy of temp

— The result would be unpredictable if temp were shared, because each processor would be writing
and reading to/from the same location

!Somp parallel do private(temp,i) shared(A,B,C)
do i=1,N
temp = A(i)/B(i)
C(i) = temp + cos(temp)
enddo
!Somp end parallel do

— A “lastprivate(temp)” clause will copy the last loop (stack) value of temp to the (global) temp

storage when the parallel DO is complete
— A "firstprivate(temp)” initializes each thread’s temp to the global value
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WO I kS h ar| N g Res u |tS Work-Sharing on Production System
(Lab Example 2)
0.7 3
Speedup = 3 o \\
peedup 8 o —
cputime(1) / cputime(N) £ gii ——o—
0 T
0 1 2 3 4 5 6 7 8 9
CPUs
If work is Completely Work-SharngboEXZrn?sll;c;ion System
parallel, scaling is linear.
10
8
Scheduling, memory g
contention and overhead i I —
can impact speedup and 0 . . . .
Gflop/s rate. ° ? Lol °
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Overhead to Fork a Thread Team

30000

25000

20000

15000

Clock Periods (1.3GHz P690)

5000

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

,;0"/ —e— parallel

10000 A

—=— parallel_do

5 10 15 20
Threads

* Increases roughly linearly with number of threads
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Additional Topics to Explore...

« Schedule clause: specify how to divide work among threads
schedule (static) schedule (dynamic, M)

« Reduction clause: perform collective operations on shared variables
reduction (+:asum) reduction (*:aprod)

« Nowait clause: remove the barrier at the end of a parallel section
for ... nowait end do nowait

* Lock routines: make mutual exclusion more lightweight and flexible
omp init lock (var) omp set lock (var)
« Rectangular loop parallelization made simple
collapse(n)
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Point to Point Send and Recv: Simple?

CPU1 CPU 2
Process 0 Process 1
send receive
g data_

« Sending data from one point (process/task)
to another point (process/task)

* One task sends while another receives
 But what if process 1 isn’t ready for the message from process 07?...
« MPI provides different communication modes in order to help
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Point to Point Synchronous Send, MPI_Ssend

CPU1 CPU 2
Process O Process 1
ready? .
send < ready. receive
g data

« Handshake procedure ensures both processes are ready

» |t's likely that one of the processes will end up waiting
— |If the send call occurs first: sender waits
— |If the receive call occurs first: receiver waits

« Waiting and an extra handshake? — this could be slow
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Point to Point Buffered Send, MPI_Bsend

CPU 1 CPU 2
Process O Process 1
send receive
Bdata_ g data
system buffer

 Message data are copied to a system-controlled block of memory
* Process 0 continues executing other tasks without waiting

« When process 1 is ready, it fetches the message from the remote
system buffer and stores it in the appropriate memory location

* Must be preceded with a call to MPI_Buffer_attach
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Point to Point Ready Send, MPI_Rsend

CPU1 CPU 2
Process O Process 1
send receive
g data

* Process 0 just assumes process 1 is ready! The message is sent!
» Truly simple communication, no extra handshake or copying

« Butan error is generated if process 1 is unable to receive

« Only useful when logic dictates that the receiver must be ready
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Point to Point Overhead

« System overhead
Buffered send has more system overhead due to the extra copy operation.

 Synchronization overhead
Synchronous send has no extra copying but more waiting, because a handshake must arrive
before the send can occur.

« MPI_Send
Standard mode tries to trade off between the types of overhead.

— Large messages use the “rendezvous protocol” to avoid extra copying: a handshake procedure
establishes direct communication.

— Small messages use the “eager protocol” to avoid synchronization cost: the message is quickly
copied to a small system buffer on the receiver.
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Point to Point Standard Send, Eager Protocol

1/23/2017

CPU 1 CPU 2
Process O Process 1
send eager receive
protocol m

system area

 Message goes a system-controlled area of memory on the receiver

* Process 0 continues executing other tasks; when process 1 is ready
to receive, the system simply copies the message from the system
buffer into the appropriate memory location controlled by process

* Does not need to be preceded with a call to MPI_Buffer_attach

www.cac.cornell.edu
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Point to Point One-Way Blocking/Non-Blocking

« Blocking send, non-blocking recv
IF (rank==0) THEN
! Do my work, then send to rank 1
CALL MPI SEND (sendbuf,count,MPI REAL,1l,tag,MPI COMM WORLD, ie)
ELSEIF (rank==1) THEN
CALL MPI IRECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD, req,ie)
! Do stuff that doesn't yet need recvbuf from rank O
CALL MPI WAIT (req,status,ie)
! Do stuff with recvbuf
ENDIF

« Non-blocking send, non-blocking recv
IF (rank==0) THEN
! Get sendbuf ready as soon as possible
CALL MPI ISEND (sendbuf,count,MPI REAL,1l,tag,MPI COMM WORLD, req,ie)
! Do other stuff that doesn’t involve sendbuf
ELSEIF (rank==1) THEN

CALL MPI_IRECV (recvbuf,count,MPI REAL,O,tag,MPI COMM WORLD,req,ie)
ENDIF

CALL MPI WAIT (req,status,ie)
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Basics LAB: Allreduce

 cdtoIntroMPI lab/allreduce
In the call to MPI_Allreduce, the reduction operation is wrong!
— Modify the C or Fortran source to use the correct operation
Compile the C or Fortran code to output the executable allreduce
Submit the myall.sh batch script to SLURM, the batch scheduler

— Check on progress until the job completes
— Examine the output file

sbatch myall.sh
squeue -u <my username>
less myall.o*

Verify that you got the expected answer
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MPI-1

MPI-1 - Message Passing Interface (v. 1.2)
— Library standard defined by committee of vendors, implementers, and parallel programmers
— Used to create parallel SPMD codes based on explicit message passing

« Avallable on almost all parallel machines with C/C++ and Fortran bindings (and occasionally
with other bindings)

« About 125 routines, total
— 6 basic routines
— The rest include routines of increasing generality and specificity

« This presentation has primarily covered MPI-1 routines
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MPI-2

* MPI-2 includes features left out of MPI-1
— One-sided communications
— Dynamic process control
— More complicated collectives
— Parallel /0 (MPI-10)
* Implementations of MPI-2 came along only gradually
— Not quickly undertaken after the reference document was released (in 1997)

— Now OpenMPI, MPICHZ2 (and its descendants), and the vendor implementations are nearly
complete or fully complete

« Most applications still rely on MPI-1, plus maybe MPI-10
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MPI-3

« MPI-3is largely but not strictly compatible with MPI-2

— One-sided communication
* Improved support for shared memory models

— Collective communication
« Added nonblocking functions
» Added neighborhood collectives for specifying process topology

— Added Fortran 2008 bindings
— Removed C++ bindings; use C bindings from C++ instead
— MPIT Tool Interface - allows inspection of MPI internal variables
* Not the default implementation on Stampede, but can be used, e.q:
— module swap mvapich2/1.9a2 mvapich2-x/2.0b
— Some implementations may not be MPI-3 complete.
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MPI_ COMM MPI Communicators

« Communicators
— Collections of processes that can communicate with each other
— Most MPI routines require a communicator as an argument
— Predefined communicator MPI_COMM_WORLD encompasses all tasks
— New communicators can be defined; any number can co-exist

« Each communicator must be able to answer two gquestions
— How many processes exist in this communicator?
— MPI_Comm_size returns the answer, say, N,
— Of these processes, which process (numerical rank) am 1?

— MPI_Comm_rank returns the rank of the current process within the communicator, an integer
between 0 and N -1 inclusive

— Typically these functions are called just after MPI_Init

1/23/2017 www.cac.cornell.edu 75



Cornell University
Center for Advanced Computing

MPI_ COMM C Example: param.c

#include <mpi.h>
main (int argc, char **argv) {
int np, mype, ierr;

ierr = MPI Init(&argc, &argv);
ierr MPI Comm size (MPI_ COMM WORLD, &np);
ierr = MPI Comm rank (MPI COMM WORLD, &mype) ;

MPI Finalize();
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MPI_ COMM C++ Example: param.cc

#include "mpif.h"
[other includes]
int main(int argc, char *argv|[]) {
int np, mype, 1ierr;
[other declarations]

MPI: :Init(argc, argv);
np MPI::COMM WORLD.Get size();
mype = MPI:.:COMM WORLD.Get rank();

[actual work goes here]

MPI: :Finalize () ;
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MPI_ COMM Fortran Example: param.f90

program param
include 'mpif.h'
integer ierr, np, mype

call mpi init(ierr)
call mpi comm size(MPI COMM WORLD, np , ierr)
call mpi comm rank (MPI COMM WORLD, mype, ierr)

call mpi finalize(ierr)
end program
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Point to Point_ Communication Modes
Mode Pros cons

Synchronous — sending - Safest, therefore most portable  Synchronization
and receiving tasks must - No need for extra buffer space  overhead

‘handshake’. - SEND/RECYV order not critical

Ready- assumes that a - Lowest total overhead RECV must prec
‘ready to receive’ - No need for extra buffer space  ede SEND
message has already - Handshake not required

been received.
Buffered — move datato - Decouples SEND from RECV Buffer copy

a buffer so process does - No sync overhead on SEND overhead

not wait. - Programmer controls buffer size

Standard — defined by - Good for many cases Your program
the implementer; meant - Small messages go right away  may not be
to take advantage of the - Large messages must sync suitable

local system. - Compromise position
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Point to Point C Example: oneway.c

#include "mpi.h"

main (int argc, char **argv) {
int ierr, mype, myworld; double a[2];
MPI Status status;
MPI Comm icomm = MPI COMM WORLD;

ierr = MPI Init(&argc, &argv);
ierr = MPI Comm rank (icomm, &mype) ;
ierr = MPI Comm size (icomm, &myworld);

if (mype == 0) {

a[0] = mype; a[l] = mype+l;

ierr = MPI Ssend(a,2,MPI DOUBLE,1l,9,icomm) ;
}
else if (mype == 1) {

ierr = MPI Recv(a,2,MPI DOUBLE,0,9,icomm,k &status) ;
printf ("PE %d, A array= %f %f\n" ,mype,a[0],a[l]);
}
MPI Finalize();
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Point to Point Fortran Example: oneway.f90

program oneway
include "mpif.h"
real*8, dimension(2) :: A
integer, dimension(MPI_STATUS SIZE) :: istat
icomm = MPI COMM WORLD
call mpi init(ierr)
call mpi comm rank (icomm,mype,ierr)
call mpi comm size(icomm,np ,ierr);

if (mype.eq.0) then
a(l) = dble(mype); a(2) = dble (mype+l)
call mpi send(A,2,MPI REALS8,1,9,icomm,ierr)
else if (mype.eq.l) then
call mpi recv(A,2,MPI REAL8,0,9,icomm,istat,ierr)
print '("PE" ,i2," received A array =",2f8.4)' ,mype,A
endif
call mpi finalize (ierr)
end program
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Collective C Example: allreduce.c

#include <mpi.h>

#define WCOMM MPI_COMM WORLD

main (int argc, char **argv) {
int npes, mype, ierr;
double sum, val; int calc, knt=1l;
ierr = MPI Init(&argc, é&argv);
ierr = MPI Comm size (WCOMM, é&npes);
ierr = MPI Comm rank (WCOMM, &mype) ;

val = (double)mype;
ierr = MPI Allreduce (
&val, &sum, knt, MPI_DOUBLE, MPI_ SUM, WCOMM) ;

calc = (npes-1 +npes%2)* (npes/2);

printf (" PE: %d sum=%5.0f calc=%d\n",mype,sum,calc);
ierr = MPI Finalize();
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Collective Fortran Example: allreduce.f90

program allreduce
include 'mpif.h'

double precision :: val, sum
icomm = MPI COMM WORLD
knt = 1

call mpi init(ierr)
call mpi comm rank (icomm,mype,ierr)
call mpi comm size (icomm,npes,ierr)

val = dble (mype)
call mpi allreduce(val,sum,knt,MPI REAL8 MPI SUM,icomm, ierr)

ncalc = (npes-1 + mod(npes,2))* (npes/2)
print ' (" pe#",i5," sum =",£5.0, " calc. sum =",i5)"', &
mype, sum, ncalc
call mpi finalize (ierr)
end program
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References

 MPI standards
— http://www.mpi-forum.org/docs/
— Documents with marked-up changes available
— Latest version: http://mpi-forum.org/docs/mpi-3.1/index.htm
— Other mirror sites: http://www.mcs.anl.gov/mpi/

— Freely available implementations
* MPICH, http://www.mcs.anl.gov/mpi/mpich
* Open MPI, http://www.open-mpi.org

« CAC Virtual workshop: https://cvw.cac.cornell.edu/topics

 Books
— Using MPI, by Gropp, Lusk, and Skjellum
— MPI Annotated Reference Manual, by Marc Snir, et al
— Parallel Programming with MPI, by Peter Pacheco
— Using MPI-2, by Gropp, Lusk and Thakur
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Heterogeneous Threading, Sequential

MPI process,
master thread

Generate
parallel region
#pragma omp parallel
do { C/C++
serial </—_\> _ #pragma omp single
work — idle { serialWork(); !
threads
#pragma omp for
for (i=0; i<N; i++){...}
}
workshare
on cpu
wait
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Heterogeneous Threading, Concurrent

MPI process,
master thread

Generate
parallel region
#pragma omp parallel C/C++
serial { : :
_ #pragma omp single nowait
work; { serialWork(); }
nowait workshare
on Cpu #pragma omp for schedule (dynamic)
for (i=0; i<N; i++){...!
}
assist when

done in single

wait
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