Cornell University
Center for Advanced Computing

Introduction to MPIl and OpenMP
(with Labs)

Brandon Barker
Computational Scientist

Cornell University Center for Advanced Computing (CAC)
brandon.barker@cornell.edu

Based on materials developed by Kent Milfeld at TACC, Steve Lantz at CAC, and Brandon Barker at CAC

Workshop: High Performance Computing on Stampede 2, Jan. 23, 2017

www.cac.cornell.edu

mailto:brandon.barker@cornell.edu

Cornell University
Center for Advanced Computing

Components

 OpenMP (shared memory)
— Parallel programming on a single node

« MPI (distributed memory)
— Parallel computing running on multiple nodes

 OpenMP + MPI (hybrid computing)
— Combine to maximize use of HPC systems

1/23/2017 www.cac.cornell.edu 2

Cornell University
Center for Advanced Computing

What is OpenMP?

 OpenMP is an acronym for Open Multi-Processing

* An Application Programming Interface (API) for
developing parallel programs in shared-memory architectures

* Three primary components of the API are:

— Compiler Directives

— Runtime Library Routines

— Environment Variables
« De facto standard -- specified for C, C++, and FORTRAN
« http://www.openmp.org/ has the specification, examples, tutorials and documentation
* OpenMP 4.5 specified November 2015

1/23/2017 www.cac.cornell.edu 3

http://www.openmp.org/

Cornell University
Center for Advanced Computing

OpenMP = Multithreading

« All about executing concurrent work (tasks)
— Tasks execute as independent threads
— Threads access the same shared memory (no message passing!)
— Threads synchronize only at barriers

« Simplest way to do multithreading — run tasks on multiple cores/units
— Insert OpenMP parallel directives to create tasks for concurrent threads
— So, shared-memory parallel programming is super-easy with OpenMP?
— Nope! Updates to a shared variable, e.g., need special treatment...

// repetitive work: OK // repetitive updates: oops
#pragma omp parallel for #pragma omp parallel for
for (i=0; i<N; i++) for (i1=0; i<N; i++)

a[i] = b[i] + c[1i]; sum = sum + b[i]*c[i];

1/23/2017 www.cac.cornell.edu 4

Cornell University
Center for Advanced Computing

Role of the Compiler

 OpenMP relies on the compiler to do the multithreading
— Compiler recognizes OpenMP directives, builds in appropriate code
« A special flag is generally required to enable OpenMP
— GNU: gcc -fopenmp
— Intel: icc -openmp
« On the Stampede 2 login node, extra flags may be required for KNL
— Tell the Intel compiler to use MIC-only instructions: -xMIC-AVX512
— Putting it all together, e.g.: icc —openmp -xMIC-AVX512
— Must do multithreading to make full use of the Xeon Phi!

1/23/2017 www.cac.cornell.edu 5

Cornell University
Center for Advanced Computing

OpenMP Fork-Join Parallelism

* Programs begin as a single process: master thread

« Master thread executes until a parallel region is encountered
— Master thread creates (forks) a team of parallel threads
— Threads in team simultaneously execute tasks in the parallel region
— Team threads synchronize and sleep (join); master continues

execution @

S
4 threads \/ 4 threads
e.g.,

4-thread

execution Master Thread Multi-Threaded

1/23/2017 www.cac.cornell.edu

Serial

Cornell University
Center for Advanced Computing

_ _ LAB: OMP Hello World
Parallel Region: C/C++ (saw already in intro lab)
1 |#pragma omp parallel
2 { code block
3 a = work(...);
4 }
Line 1 Team of threads is formed at parallel region

Lines 2—3 Each thread executes code block and subroutine call, no
branching into or out of a parallel region

Line 4 All threads synchronize at end of parallel region (implied
barrier)

1/23/2017 www.cac.cornell.edu 7

Cornell University
Center for Advanced Computing

OpenMP on Shared Memory Systems

Software Model:
Threads in
| Parallel Region

Hardware Model:
Multiple Cores

Thread Thread Thread Thread
1 2 a.out 0 1 2 M-1

Thread Thread Thread Thread
M M+1 M+2 2M-1

= accessible by
all threads

= private memory

for thread x

Cornell University
Center for Advanced Computing

OpenMP Directives

* OpenMP directives are comments in source code that specify parallelism for shared-memory
parallel (SMP) machines

« FORTRAN compiler directives begin with one of the sentinels
I SOMP, C$SOMP, or *$SOMP — use ! SOMP for free-format F90

« C/C++ compiler directives begin with the sentinel #pragma omp

Fortran 90 C/C++
1SOMP parallel #pragma omp parallel
... {...
1SOMP end parallel }
1SOMP parallel do #pragma omp parallel for
DO ... for(...){...
ISOMP end parallel do }

1/23/2017 www.cac.cornell.edu 9

Cornell University
Center for Advanced Computing

OpenMP Syntax

 OpenMP Directives: Sentinel, construct, and clauses

#pragma omp construct [clause [[,]Jclause]...] C
« Example
#pragma omp parallel private(i) reduction(+:sum) C

« Most OpenMP constructs apply to a “structured block”, that is, a block of one or more
statements with one point of entry at the top and one point of exit at the bottom.

1/23/2017 www.cac.cornell.edu 10

Cornell University
Center for Advanced Computing

Worksharing Loop: C/C++

General form:

1 |#pragma omp parallel for | #ipragma omp parallel

2 for (i=0; i<N; i++) {

3| { #pragma omp for

4 al[i] = b[i] + c[i]; for (i=0; i<N; i++)

S| } {a[i1] = b[i] + c[i];}
6 }

Line 1 Team of threads formed (parallel region).

Lines 2—6 Loop iterations are split among threads.
Implied barrier at end of block(s) {}.

Each loop iteration must be independent of other iterations

(at a minimum, compiler will complain and your loop won’t be
1/23/2017 parallelized). www.cac.cornell.edu 11

Cornell University
Center for Advanced Computing

OpenMP Clauses

« Directives dictate what the OpenMP thread team will do

— Parallel regions are marked by the parallel directive
— Worksharing loops are marked by do, for directives (Fortran, C/C++)

« Clauses control the behavior of any particular OpenMP directive
1. Scoping of variables: private, shared, default

Initialization of variables: copyin, firstprivate

Scheduling: static, dynamic, guided

Conditional application: i f

Number of threads in team: num threads

a s~ wbd

1/23/2017 www.cac.cornell.edu 12

Cornell University
Center for Advanced Computing

lllustration of a Race Condition

Intended Possible...
-- | Thread 0 | | Thread 1 | | Value_
read 0

increment 0 read — 0

write — 1 increment read — 0
read <« 1 write — increment 1

increment 1 write — 1

write — 2 1

* |n a critical section, need mutual exclusion (mutex) to get intended result
— Only use when needed; incurs a performance penalty due to serial execution

« The following OpenMP directives prevent this race condition:

#pragma omp critical — for a code block (C/C++)
#pragma omp atomic — for single statements

1/23/2017 www.cac.cornell.edu 13

Cornell University
Center for Advanced Computing

OpenMP Reduction

« Recall previous example of parallel dot product
— Simple parallel-for doesn’t work due to race condition on shared sum

— Best solution is to apply OpenMP’s reduction clause
— Doing private partial sums is fine too; add a critical section for sum of ps

1/23/2017

// repetitive updates: oops
#pragma omp parallel for

for (i=0; i<N; i++)
sum = sum + b[i]*c[i];

// repetitive reduction: OK

#pragma omp parallel for \
reduction (+:sum)

for (i=0; i<N; i++)
sum = sum + b[i]*c[i];

// repetitive updates: OK

int ps = 0;
#pragma omp parallel \
firstprivate (ps)

{
#pragma omp for

for (i=0; i<N; i++)
ps = ps + b[i]*c[i];

#pragma omp critical
sum = sum + ps; }

www.cac.cornell.edu

14

Cornell University
Center for Advanced Computing

Runtime Library Functions

omp_get num _ threads () Number of threads in current team

omp get thread num/() Thread ID, {0: N-1}

omp get max threads() Number of threads in environment,
OMP_NUM THREADS

omp _get num procs() Number of machine CPUs

omp in parallel () True if in parallel region & multiple threads

are executing

omp_set num threads (#) | Changes number of threads for parallel
region, if dynamic threading is enabled

1/23/2017 www.cac.cornell.edu 15

Cornell University
Center for Advanced Computing

Environment Variables, More Functions

1/23/2017

« To control the OpenMP runtime environment

OMP_NUM THREADS

Set to permitted number of threads: this is the
value returned by omp get max threads ()

OMP DYNAMIC

TRUE/FALSE for enable/disable dynamic
threading by calling omp set num threads

(can also use a function to do this).

www.cac.cornell.edu

16

Cornell University
Center for Advanced Computing

Loop Nesting in 3.0

: ' Nested Parallel Region Serial
execution ® SEiEl ® J

Master Thread

* OpenMP 3.0 supports nested parallelism, older implementations
may ignore the nesting and serialize inner parallel regions.

« A nested parallel region can specify any number of threads to be
used for the thread team, new id’s are assigned.

1/23/2017 www.cac.cornell.edu 17

Cornell University
Center for Advanced Computing

MPI. Message Passing

Overview

Basics
— Hello World in MPI

— Compiling and running MPI programs (LAB)

MPI messages

Point-to-point communication
— Deadlock and how to avoid it (LAB)

Collective communication

1/23/2017

www.cac.cornell.edu

18

Cornell University
Center for Advanced Computing

Overview Introduction

 What is message passing?
— Sending and receiving messages between tasks or processes

— Includes performing operations on data in transit and synchronizing
tasks

 Why send messages?

— Clusters have distributed memory, i.e. each process has its own
address space and no way to get at another’s

 How do you send messages?
— Programmer makes use of an Application Programming Interface (API)
— In this case, MPI.
— MPI specifies the functionality of high-level communication routines

— MPI’s functions give access to a low-level implementation that takes
care of sockets, buffering, data copying, message routing, etc.

1/23/2017 www.cac.cornell.edu 19

Cornell University
Center for Advanced Computing

Overview API for Distributed Memory Parallelism

« Assumption: processes do not see each other’'s memory
— Some systems overcome this assumption
* GAS (Global Address Space) abstraction and variants
« Communication speed is determined by some kind of
network

— Typical network = switch + cables + adapters + software
stack...

« Key: the implementation of MPI (or any message passing
API) can be optimized for any given network
— Expert-level performance
— No code changes required
— Works in shared memory, too

Image of Dell PowerEdge C8220X: http://www.theregister.co.uk/2012/09/19/dell_zeus_c8000_hyperscale_server/

1/23/2017 www.cac.cornell.edu 20

Cornell University
Center for Advanced Computing

Overview Why Use MPI?

MPI is a de facto standard for distributed memory computing
— Public domain versions are easy to install
— Vendor-optimized version are available on most hardware

« MPI is “tried and true’
— MPI-1 was released in 1994, MPI-2 in 1996, and MPI-3 in 2012.

* MPI applications can be fairly portable
 MPIis a good way to learn parallel programming

 MPI is expressive: it can be used for many different models of computation, therefore can be
used with many different applications

« MPI code is efficient (though some think of it as the “assembly language of parallel
processing”)

« MPI has freely available implementations (e.g., MPICH, OpenMPI)

1/23/2017 www.cac.cornell.edu 21

Cornell University
Center for Advanced Computing

MPI and Single Program, Multiple Data (SPMD)

— One source code is written
— Same program runs multiple times, but each time with different data

— With MPI
» Code can have conditional execution based on which processor is executing the copy: choose data
 All copies of code are started simultaneously and may communicate and sync with each other periodically
» Conclusion: MPI allows more SPMD programs than embarrassingly parallel applications

1/23/2017 www.cac.cornell.edu 22

Cornell University

Center for Advanced Computing

SPMD Programming Model

1/23/2017

Processor O

source.c =» a.out (compiled)

Processor 1

Processor 2

www.cac.cornell.edu

Processor 3

23

Cornell University
Center for Advanced Computing

Basics Simple MPI

Here is the basic outline of a simple MPI program :

* Include the implementation-specific header file —
#include <mpi.h> inserts basic definitions and types
« Initialize communications —

MPI_Init initializes the MPI environment
MPI_Comm_size returns the number of processes
MPI_Comm_rank returns this process’s number (rank)

« Communicate to share data between processes —

MPI_Send sends a message
MPI_Recv receives a message

« Exit from the message-passing system —
MPI_Finalize

1/23/2017 www.cac.cornell.edu 24

Cornell University
Center for Advanced Computing

Basics Minimal Code Example: hello_mpi.c

#include <stdio.h>
#include <string.h>
#include <mpi.h>
main (int argc, char **argv)
{
char message[20];
int i, rank, size, tag = 99;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm size (MPI COMM WORLD, &size);
MPI Comm rank (MPI COMM WORLD, &rank);

if (rank == 0) {
strcpy (message, "Hello, world!");
for (1 = 1; i < size; 1i++)
MPI Send(message, 13, MPI CHAR, i, tag, MPI COMM WORLD) ;
} else {

MPI Recv (message, 20, MPI CHAR, 0, tag, MPI COMM WORLD, é&status);
}

printf ("Message from process %d : %.13s\n", rank, message);
MPI Finalize();

1/23/2017 www.cac.cornell.edu 25

Cornell University
Center for Advanced Computing

Basics Initialize and Close Environment

Initialize MPI environment

An implementation may also
use this call as a mechanism
for making the usual argc and
argv command-line arguments
. from “main” available to all
MPI_Init

- tasks (C language only).

Close MPI environment

MPI_Finalize

1/23/2017 www.cac.cornell.edu 26

Cornell University
Center for Advanced Computing

Basics Query Environment

Returns number of processes
This, like nearly all other MPI
functions, must be called after
MPI_Init and before MPI_Finalize.
Input is the name of a communicator
(MPI_COMM_WORLD is the global
MPI_Comm_size communicator) and output is the size
MPI_Comm_rank of that communicator.

Returns this process’ number, or rank
Input is again the name of a
communicator and the output is the rank
of this process in that communicator.

1/23/2017 www.cac.cornell.edu 27

Cornell University
Center for Advanced Computing

Basics Pass Messages

Send a message
Blocking send of data in the buffer.

Receive a message
Blocking receive of data into the buffer.

MPI_Send

MPI_Recv

1/23/2017 www.cac.cornell.edu 28

Cornell University
Center for Advanced Computing

Basics Compiling MPI Programs

* Generally, one uses a special compiler or wrapper script
— Not defined by the standard
— Consult your implementation
— Correctly handles include path, library path, and libraries
 On Stampede 2, use MPICH-style wrappers (the most common)
mpicc -o foo foo.c
mpicxx -o foo foo.cc
mpif90 -o foo foo.f (also mpif77)
— Choose compiler+MPI with “module load” (default, Intel17+Intel MPI)

1/23/2017 www.cac.cornell.edu

29

Cornell University
Center for Advanced Computing

1/23/2017

Running MPI Programs

To run a simple MPI program, use MPICH-style commands
(Can’t do this on login nodes!)
mpirun -n 4 ./foo (usually mpirun is just a soft link to...)
mpiexec -n 4 ./foo
Some options for running
-n -- states the number of MPI processes to launch
-wdir <dirname> -- starts in the given working directory
--help -- shows all options for mpirun
To run over Stampede 2’s Omni-Path (as part of a batch script)
ibrun ./foo (Can'’t do this on login nodes either!)
ibrun -help ### This is OK!
— The scheduler handles the rest

Note: mpirun, mpiexec, and compiler wrappers are not part of MPI,
but they can be found in nearly all implementations

www.cac.cornell.edu

30

Cornell University
Center for Advanced Computing

Basics Creating an MPI Batch Script

 To submit a job to the compute nodes on Stampede, you must first create a SLURM batch
script with the commands you want to run.

#!/bin/bash

#SBATCH -J myMPI
#SBATCH -0 myMPI.o%j
#SBATCH -e myMPI.err$%j
#SBATCH -N 1

#SBATCH -n 16

#SBATCH -p normal
#SBATCH -t 00:01:00
#SBATCH -A TG-TRA140011

job name

output file (%j = jobID)

Direct error to the error file

number of nodes requested

number of MPI (total) tasks requested
queue (partition)

run time (hh:mm:ss)

dE FH d dE S dk gk &k

account number

echo 2000 > input
ibrun ./myprog < input # run MPI executable "myprog"

1/23/2017 www.cac.cornell.edu 31

Cornell University
Center for Advanced Computing

Basics LAB: Submitting MPI Programs

« Obtain the hello_mpi.c source code:

cd IntroMPI_lab/hello

« Compile the code using mpicc to output the
executable hello_mpi
* Modify the myMPIl.sh batch script to run hello_mpi
— Do you really need the “echo” command, e.g.?
— (see myMPI_solution.sh for corrections)

« Submit the batch script to SLURM, the batch

scheduler | | sbatch --reservation=CAC2 -p normal myMPI.sh
— Check on progress until the job completes | # see myMPI solution.sh for hints

— Examine the output file squeue -u <my username>
less myMPI.o*

1/23/2017 www.cac.cornell.edu 32

1/23/2017

Cornell University
Center for Advanced Computing

Messages Three Parameters Describe the Data

MPI_Send(

MPI_Recv(

message, 13, MPI_CHAR, |i, tag, MPI_COMM_WORLD);

message, 20, MPI_CHAR, |0, tag, MPI_COMM_WORLD, &status);
I \

Type of data, should be same
for send and receive
MPI_Datatype type

Number of elements (items, not bytes)
Recv number should be greater than or
equal to amount sent

int count

Address where the data start
void* data

www.cac.cornell.edu

33

Cornell University

Center for Advanced Computing

Messages Three Parameters Specify Routing
MPI_Send(message, 13, MP|_CHAR, |i, tag, MPI_ COMM_WORLD)

MPI_Recv(message, 20, MPI_CHAR, |0, tag, MPI_COMM_WORLD, &status);
/

l
|dentify process you're /
communicating with by rank number

int dest/src

Arbitrary tag number, must match up

(receiver can specify MPI_ANY_TAG to
indicate that any tag is acceptable)

int tag
Communicator specified for send and Returns information
receive must match, no wildcards on received message
MPI_Comm comm MPI|_Status* status

1/23/2017 www.cac.cornell.edu 34

Cornell University
Center for Advanced Computing

Messages Fortran Notes

mpi send (data, count, type, dest, tag, comm, ierr)
mpi recv (data, count, type, src, tag, comm, status, ierr)

« A few Fortran particulars
— All Fortran arguments are passed by reference
— INTEGER ierr: variable to store the error code (in C/C++ this is the return value of the function call)

* Wildcards are allowed in C and Fortran
— src can be the wildcard MPlI_ANY_SOURCE
— tag can be the wildcard MPI_ANY_TAG
— status returns information on the source and tag
— Receiver might check status when wildcards are used, e.g., to check sender rank

1/23/2017 www.cac.cornell.edu 35

Cornell University
Center for Advanced Computing

Point to Point Topics

 MPI_Send and MPI_Recv: how simple are they really?

* Blocking vs. non-blocking send and receive

« Ways to specify synchronous or asynchronous communication
« Reducing overhead: ready mode, standard mode

« Combined send/receive

« Deadlock, and how to avoid it

1/23/2017 www.cac.cornell.edu 36

Cornell University
Center for Advanced Computing

Point to Point Blocking vs. Non-Blocking

MPI1_Send, MPI_Recv

A blocking call suspends execution of the process until the message buffer being sent/received
IS safe to use.

MPI_Isend, MPI_lrecv

A non-blocking call just initiates communication; the status of data transfer and the success of
the communication must be verified later by the programmer (MPI_Wait or MPI1_Test).

1/23/2017 www.cac.cornell.edu 37

Cornell University
Center for Advanced Computing

Point to Point Send and Recv: So Many Choices

The communication mode indicates how the message should be sent.

Communication Blocking Routines Non-Blocking Routines
Mode
Synchronous MPI_Ssend MPI_Issend
Ready MPI_Rsend MPI_Irsend
Buffered MPI_Bsend MPI_Ibsend
Standard MPI_Send MPI_Isend
MPI_Recv MPI _Irecv

MPI_Sendrecv
MPI_Sendrecv_replace

Note: the receive routine does not specify the communication mode -- it is simply blocking or
non-blocking.

1/23/2017 www.cac.cornell.edu 38

Cornell University
Center for Advanced Computing

Point to Point MPI_Sendrecv

MPI Sendrecv (sendbuf, sendcount, sendtype,dest, sendtag,
recvbuf,6 recvcount, recvtype, source, recvtag,
comm, status)

« Good for two-way communication between a pair of nodes, in which each one sends and
receives a message

« However, destination and source need not be the same (ring, e.g.)
« Equivalent to blocking send + blocking receive
« Send and receive use the same communicator but have distinct tags

1/23/2017 www.cac.cornell.edu 39

Cornell University
Center for Advanced Computing

Point to Point Two-Way Communication: Deadlock!

e Deadlock 1

IF (rank==0) THEN
CALL MPI RECV (recvbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, status, ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, ie)

ELSEIF (rank==1) THEN
CALL MPI RECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 0, tag, MPI COMM WORLD, ie)

ENDIF

« Deadlock 2

IF (rank==0) THEN

CALL MPI SSEND (sendbuf, count ,MPI REAL, 1,taqg, MPI COMM WORLD, ie)

CALL MPI RECV (recvbuf,count,MPI REAL,1,tag,MPI COMM WORLD,status, ie)
ELSEIF (rank==1) THEN

CALL MPI SSEND (sendbuf, count ,MPI REAL, 0, tag, MPI COMM WORLD, ie)

CALL MPI RECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
ENDIF

— MPI_Send has same problem for count*MPI_REAL > 12K
(the MVAPICHZ2 “eager threshold”; it's 256K for Intel MPI)

1/23/2017 www.cac.cornell.edu 40

Cornell University
Center for Advanced Computing

Basics LAB: Deadlock

 cdto IntroMPI lab/deadlock
« Compile the C or Fortran code to output the executable deadlock
« Create a batch script including no #SBATCH parameters:

cat > sr.sh
#'!'/bin/sh
ibrun ./deadlock [ctrl-D to exit cat]

« Submit the job, specifying parameters on the command line

sbatch -N 1 -n 8 --reservation=CAC2 -p normal -t 00:00:30 -A TG-TRA140011 sr.sh

« Check job progress with squeue; check output with less.

* The program will not end normally. Edit the source code to eliminate deadlock (e.g., use
sendrecv) and resubmit until the output is good.

1/23/2017 www.cac.cornell.edu 41

Cornell University
Center for Advanced Computing

Point to Point Deadlock Solutions

« Solution 1
IF (rank==0) THEN
CALL MPI_ SEND (sendbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, ie)
CALL MPI RECV (recvbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, status, ie)
ELSEIF (rank==1) THEN
CALL MPI RECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 0, tag, MPI COMM WORLD, ie)
ENDIF

« Solution 2
IF (rank==0) THEN
CALL MPI SENDRECV (sendbuf,count,MPI REAL,1,tag, &
recvbuf,count,MPI REAL, 1, tag,MPI COMM WORLD,status, ie)
ELSEIF (rank==1) THEN
CALL MPI SENDRECV (sendbuf, count yMPI REAL, 0,tag, &
recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD,status, ie)
ENDIF

1/23/2017 www.cac.cornell.edu 42

Cornell University
Center for Advanced Computing

Point to Point More Deadlock Solutions

e Solution 3
IF (rank==0) THEN
CALL MPI IRECV (recvbuf,count,MPI REAL,1l,tag,MPI COMM WORLD, req,ie)
CALL MPI_ SEND (sendbuf, count, MPI REAL, 1,taqg, MPI COMM WORLD, ie)
ELSEIF (rank==1) THEN
CALL MPI IRECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD, req,ie)
CALL MPI_SEND (sendbuf,count,MPI REAL,O0,tag,MPI_COMM WORLD,ie)
ENDIF
CALL MPI WAIT (req,status)

e Solution 4

IF (rank==0) THEN

CALL MPI BSEND (sendbuf, count ,MPI REAL, 1,taqg, MPI COMM WORLD, ie)

CALL MPI RECV (recvbuf,count,MPI REAL,1,tag,MPI COMM WORLD,status, ie)
ELSEIF (rank==1) THEN

CALL MPI BSEND (sendbuf, count ,MPI REAL, 0, tag, MPI COMM WORLD, ie)

CALL MPI RECV(recvbuf,count,MPI REAL,0,tag,MPI COMM WORLD, status,ie)
ENDIF

1/23/2017 www.cac.cornell.edu

43

Cornell University
Center for Advanced Computing

Point to Point Two-way Communications: Summary

Task O Task 1
Deadlock 1 Recv/Send Recv/Send
Deadlock 2 Send/Recv Send/Recv
Solution 1 Send/Recv Recv/Send
Solution 2 Sendrecv Sendrecv
Solution 3 Irecv/Send, Wait (recv/Send, (Wait)
Solution 4 Bsend/Recv (B)send/Recv

1/23/2017

www.cac.cornell.edu

44

Cornell University
Center for Advanced Computing

Collective Motivation

 What if one task wants to send to everyone?

if (mytid == 0) ({
for (tid=1; tid<ntids; tid++) {

MPI Send((void*)a, /* target= */ tid, ..);
}
} else {
MPI Recv((void*)a, 0, ..);

}

* Implements a very naive, serial broadcast
« Too primitive
— Leaves no room for the OS / switch to optimize
— Leaves no room for more efficient algorithms
 Too slow

1/23/2017 www.cac.cornell.edu

45

Cornell University
Center for Advanced Computing

Collective Overview

« Collective calls involve ALL processes within a communicator

 There are 3 basic types of collective communications:

— Synchronization (MPI_Batrrier)

— Data movement (MPI_Bcast/Scatter/Gather/Allgather/Alltoall)

— Collective computation/reduction (MP1_Reduce/Allreduce/Scan)
* Programming considerations & restrictions

— Blocking operation (also non-blocking in MPI-3)

— No use of message tag argument

— Collective operations within subsets of processes require separate grouping and new
communicator

1/23/2017 www.cac.cornell.edu 46

Cornell University
Center for Advanced Computing

Collective Barrier Synchronization, Broadcast

« Barrier blocks until all processes in comm have called it
— Useful when measuring communication/computation time

mpi barrier (comm, ierr)

MPI Barrier (comm)

« Broadcast sends data from root to all processes in comm
— Again, blocks until all tasks have called it

mpi bcast(data, count, type, root, comm, ierr)
MPI Bcast(data, count, type, root, comm)

1/23/2017 www.cac.cornell.edu 47

Collective

1/23/2017

Cornell University
Center for Advanced Computing

 Broadcast

e Scatter/Gather

« Allgather

o Alltoall

Data Movement

PO | A

P2 |
P3 |

N

P1 | | | | | EBroadcast
N
I

—

| | Scatter

Pel | [[]

P2| | | | | Cather

Pal | | | |

Polal | | |

P | B | | | | All gather
P2lc| | | |

P(D| | | |

PO |A0|A1|A2|A3]

P4 |Bo|B1|B2|B3| Al to Al

P2 |co|ct|c2|cs|
P3 [oo|o1|p2|Ds|

www.cac.cornell.edu

PO | A |

P1|a]
P2 | A
P3| A |

PO | A |

P18 |
P2 | C|
P3| D|

Ppolale|c|D]

p1|alB|c]|D]
Pp2lale|c|D]
Ppsla|B|c|D]

Po |Ao|Bo|co| Do

P1 |a1]B1]|c1|D1]
P2 |A2|B2|c2|D2|
P3 [as|Bz]|cz|Ds|

48

Cornell University
Center for Advanced Computing

Collective Reduction Operations
PO | A PO | ABGD
Reduce
 Reduce e — o
F2 |G P2
P3| D P3
FO|A FQ A
. Scan (Prefix) P18 Scan P1LAB
P2 | G = o[ABC
P3| D P3| ABGD

1/23/2017 www.cac.cornell.edu 49

Cornell University
Center for Advanced Computing

Collective Reduction Operations
Name Meaning
MPI_MAX Maximum
MPI_MIN Minimum
MPI1_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bit-wise and
MPI_LOR Logical or
MPI_BOR Bit-wise or
MPI_LXOR Logical xor
MPI_BXOR Logical xor
MPI_MAXLOC Max value and location
MPI_MINLOC Min value and location

1/23/2017 www.cac.cornell.edu 50

Cornell University
Center for Advanced Computing

Hybrid Why use OpenMP and MPI?

 Try to exploit the whole shared/distributed memory hierarchy

« Memory is insufficient within one node
» Essential concept for KNL, need to take advantage of shared data within process

* Note: Each of Stampede 2's KNL nodes has 96GB of main memory
— Remember, MCDRAM (16GB) is used as cache by default.
 Torun 1 process (rank) per node, have sbatch -N x -n y, withx==y, e.q.:
« #SBATCH -N 64 # number of nodes requested
e #SBATCH -n 64 # number of MPI (total) tasks requested

1/23/2017 www.cac.cornell.edu

51

Cornell University
Center for Advanced Computing

36 Tiles
connected by
2D Mesh
Interconnect

other
¥ nodes

N 7z

4
. . .
S 4 - '

7 -

S -,
N -, .
-
-
MI I]

JUBEEROERBENEoE
EBEEBREBREEREEEE HEREERREEAEERHEE

1/23/2017 www.cac.cornell.edu 52

-
-

Cornell University
Center for Advanced Computing

Threading Example: One MPI, Many OpenMP

1/23/2017

C

#include <mpi.h>

int main(int argc,
char **argv) {

int rank, size, ie, 1i;

//Setup shared mem, comp/comm

#pragma omp parallel for
for (i=0; i<n; i++) {
<work>
}

// compute & communicate

}

www.cac.cornell.edu

53

Cornell University
Center for Advanced Computing

Some Programming Models for Intel MIC

e OpenMP
— On Stampede 2, TACC expects that this is the most approachable programming model for HPC users
* Intel Threading Building Blocks (TBB)
— For C++ programmers
* Intel Cilk Plus
— Task-oriented add-ons for OpenMP
— Currently for C++ programmers, may become available for Fortran
* Intel Math Kernel Library (MKL)
— MKL is inherently parallelized with OpenMP
 CAF (Actor model) library
— Lightweight message passing
» (actors per thread instead of threads per task, as in Hybrid OpenMP+MPI)
— One API for distributed and shared memory programming
— Patrtially fault-tolerant (compare to MPI)

1/23/2017 www.cac.cornell.edu 54

Cornell University
Center for Advanced Computing

References

e Standards

— OpenMP: http://www.openmp.org/specifications/
« All of v4 and most of v4.5 supported by Intel Compiler 17: https://software.intel.com/en-us/node/684308

— MPI: http://mpi-forum.org/docs/mpi-3.1/index.htm (Supported by Intel “17)
« CAC Virtual workshop: https://cvw.cac.cornell.edu/topics

— Covers MPI and OpenMP in more detail

— Corresponding Fortran examples

— More references!

1/23/2017 www.cac.cornell.edu 55

http://www.openmp.org/specifications/
https://software.intel.com/en-us/node/684308
https://software.intel.com/en-us/node/684308
https://software.intel.com/en-us/node/684308
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
https://cvw.cac.cornell.edu/topics

Cornell University

Center for Advanced Computing

1/23/2017 www.cac.cornell.edu 56

Cornell University
Center for Advanced Computing

OpenMP Worksharing

Use OpenMP directives to specify worksharing
In a parallel region, as well as synchronization

#pragma omp parallel | code block Thread action
{ for Worksharing
¥pragma omp sections Worksharing
single One thread
master One thread
| } // end parallel critical One thread at a time
parallel do/for Directives can be combined,
parallel sections If a parallel region has just

one worksharing construct.

1/23/2017 www.cac.cornell.edu 57

Cornell University

Center for Advanced Computing

OpenMP Parallel Directives

* Replicated — executed by all threads PARALLEL
« Worksharing - divided among threads . {codel}
do I = 1,N*4
PARALLEL DO {code2}
do I = 1,N*4 end do
PARALLEL {code} {code3}
{code} end do END PARALLEL
END PARALLEL END PARALLEL DO M
l l code1 code1 code1 code1
I=1,N [=N#1,2N 1=2N+1,3N 1=3N+1,4N |=f;4 I=N112N |=2; 1,3N |=;; 1,4N
cofe code code code cod% co{e code c%e code2 code2 co ;2 cod;2
. _ code3 code3 code3 code3
Replicated Worksharing :
Combined

1/23/2017 www.cac.cornell.edu 58

Cornell University
Center for Advanced Computing

OpenMP Constructs

OpenMP language

“extensions’
parallel Work- control of data synchron- runtime
control sharing one task access ization environment
* governs flow * distributes * assigns * specifies » coordinates * sets/gets environment
of control in work among work to a scoping of execution of
the program threads thread variables threads schedule
omp_set num threads()
do/for task shared critical omp_get thread num()
parallel sections directive private atomic OMP_NUM THREADS
directive single (OpenMP 3.0) reduction barrier OMP_SCHEDULE
directives clauses directives clause, API, env. variables

1/23/2017 www.cac.cornell.edu 59

Cornell University
Center for Advanced Computing

Private, Shared Clauses

* In the following loop, each thread needs a private copy of temp

— The result would be unpredictable if temp were shared, because each processor would be writing
and reading to/from the same location

!Somp parallel do private(temp,i) shared(A,B,C)
do i=1,N
temp = A(i)/B(i)
C(i) = temp + cos(temp)
enddo
!Somp end parallel do

— A “lastprivate(temp)” clause will copy the last loop (stack) value of temp to the (global) temp

storage when the parallel DO is complete
— A "firstprivate(temp)” initializes each thread’s temp to the global value

1/23/2017 www.cac.cornell.edu 60

Cornell University
Center for Advanced Computing

WO I kS h ar| N g Res u |tS Work-Sharing on Production System
(Lab Example 2)
0.7 3
Speedup = 3 o \\
peedup 8 o —
cputime(1) / cputime(N) £ gii ——o—
0 T
0 1 2 3 4 5 6 7 8 9
CPUs
If work is Completely Work-SharngboEXZrn?sll;c;ion System
parallel, scaling is linear.
10
8
Scheduling, memory g
contention and overhead i I —
can impact speedup and 0
Gflop/s rate. ° ? Lol °

1/23/2017 www.cac.cornell.edu 61

Cornell University
Center for Advanced Computing

Overhead to Fork a Thread Team

30000

25000

20000

15000

Clock Periods (1.3GHz P690)

5000

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

,;0"/ —e— parallel

10000 A

—=— parallel_do

5 10 15 20
Threads

* Increases roughly linearly with number of threads

1/23/2017

www.cac.cornell.edu

62

Cornell University
Center for Advanced Computing

Additional Topics to Explore...

« Schedule clause: specify how to divide work among threads
schedule (static) schedule (dynamic, M)

« Reduction clause: perform collective operations on shared variables
reduction (+:asum) reduction (*:aprod)

« Nowait clause: remove the barrier at the end of a parallel section
for ... nowait end do nowait

* Lock routines: make mutual exclusion more lightweight and flexible
omp init lock (var) omp set lock (var)
« Rectangular loop parallelization made simple
collapse(n)

1/23/2017 www.cac.cornell.edu 63

Cornell University
Center for Advanced Computing

Point to Point Send and Recv: Simple?

CPU1 CPU 2
Process 0 Process 1
send receive
g data_

« Sending data from one point (process/task)
to another point (process/task)

* One task sends while another receives
 But what if process 1 isn’t ready for the message from process 07?...
« MPI provides different communication modes in order to help

1/23/2017 www.cac.cornell.edu 64

Cornell University
Center for Advanced Computing

Point to Point Synchronous Send, MPI_Ssend

CPU1 CPU 2
Process O Process 1
ready? .
send < ready. receive
g data

« Handshake procedure ensures both processes are ready

» |t's likely that one of the processes will end up waiting
— |If the send call occurs first: sender waits
— |If the receive call occurs first: receiver waits

« Waiting and an extra handshake? — this could be slow

1/23/2017 www.cac.cornell.edu 65

Cornell University
Center for Advanced Computing

Point to Point Buffered Send, MPI_Bsend

CPU 1 CPU 2
Process O Process 1
send receive
Bdata_ g data
system buffer

 Message data are copied to a system-controlled block of memory
* Process 0 continues executing other tasks without waiting

« When process 1 is ready, it fetches the message from the remote
system buffer and stores it in the appropriate memory location

* Must be preceded with a call to MPI_Buffer_attach

1/23/2017 www.cac.cornell.edu 66

Cornell University
Center for Advanced Computing

Point to Point Ready Send, MPI_Rsend

CPU1 CPU 2
Process O Process 1
send receive
g data

* Process 0 just assumes process 1 is ready! The message is sent!
» Truly simple communication, no extra handshake or copying

« Butan error is generated if process 1 is unable to receive

« Only useful when logic dictates that the receiver must be ready

1/23/2017 www.cac.cornell.edu 67

Cornell University
Center for Advanced Computing

Point to Point Overhead

« System overhead
Buffered send has more system overhead due to the extra copy operation.

 Synchronization overhead
Synchronous send has no extra copying but more waiting, because a handshake must arrive
before the send can occur.

« MPI_Send
Standard mode tries to trade off between the types of overhead.

— Large messages use the “rendezvous protocol” to avoid extra copying: a handshake procedure
establishes direct communication.

— Small messages use the “eager protocol” to avoid synchronization cost: the message is quickly
copied to a small system buffer on the receiver.

1/23/2017 www.cac.cornell.edu 68

http://www.cac.cornell.edu/ranger/mpip2p/rendezvous.html

Cornell University
Center for Advanced Computing

Point to Point Standard Send, Eager Protocol

1/23/2017

CPU 1 CPU 2
Process O Process 1
send eager receive
protocol m

system area

 Message goes a system-controlled area of memory on the receiver

* Process 0 continues executing other tasks; when process 1 is ready
to receive, the system simply copies the message from the system
buffer into the appropriate memory location controlled by process

* Does not need to be preceded with a call to MPI_Buffer_attach

www.cac.cornell.edu

69

Cornell University
Center for Advanced Computing

Point to Point One-Way Blocking/Non-Blocking

« Blocking send, non-blocking recv
IF (rank==0) THEN
! Do my work, then send to rank 1
CALL MPI SEND (sendbuf,count,MPI REAL,1l,tag,MPI COMM WORLD, ie)
ELSEIF (rank==1) THEN
CALL MPI IRECV (recvbuf,count,MPI REAL,O0,tag,MPI COMM WORLD, req,ie)
! Do stuff that doesn't yet need recvbuf from rank O
CALL MPI WAIT (req,status,ie)
! Do stuff with recvbuf
ENDIF

« Non-blocking send, non-blocking recv
IF (rank==0) THEN
! Get sendbuf ready as soon as possible
CALL MPI ISEND (sendbuf,count,MPI REAL,1l,tag,MPI COMM WORLD, req,ie)
! Do other stuff that doesn’t involve sendbuf
ELSEIF (rank==1) THEN

CALL MPI_IRECV (recvbuf,count,MPI REAL,O,tag,MPI COMM WORLD,req,ie)
ENDIF

CALL MPI WAIT (req,status,ie)

1/23/2017 www.cac.cornell.edu

70

Cornell University
Center for Advanced Computing

Basics LAB: Allreduce

 cdtoIntroMPI lab/allreduce
In the call to MPI_Allreduce, the reduction operation is wrong!
— Modify the C or Fortran source to use the correct operation
Compile the C or Fortran code to output the executable allreduce
Submit the myall.sh batch script to SLURM, the batch scheduler

— Check on progress until the job completes
— Examine the output file

sbatch myall.sh
squeue -u <my username>
less myall.o*

Verify that you got the expected answer

1/23/2017 www.cac.cornell.edu 71

Cornell University
Center for Advanced Computing

MPI-1

MPI-1 - Message Passing Interface (v. 1.2)
— Library standard defined by committee of vendors, implementers, and parallel programmers
— Used to create parallel SPMD codes based on explicit message passing

« Avallable on almost all parallel machines with C/C++ and Fortran bindings (and occasionally
with other bindings)

« About 125 routines, total
— 6 basic routines
— The rest include routines of increasing generality and specificity

« This presentation has primarily covered MPI-1 routines

1/23/2017 www.cac.cornell.edu 72

Cornell University
Center for Advanced Computing

MPI-2

* MPI-2 includes features left out of MPI-1
— One-sided communications
— Dynamic process control
— More complicated collectives
— Parallel /0 (MPI-10)
* Implementations of MPI-2 came along only gradually
— Not quickly undertaken after the reference document was released (in 1997)

— Now OpenMPI, MPICHZ2 (and its descendants), and the vendor implementations are nearly
complete or fully complete

« Most applications still rely on MPI-1, plus maybe MPI-10

1/23/2017 www.cac.cornell.edu 73

Cornell University
Center for Advanced Computing

MPI-3

« MPI-3is largely but not strictly compatible with MPI-2

— One-sided communication
* Improved support for shared memory models

— Collective communication
« Added nonblocking functions
» Added neighborhood collectives for specifying process topology

— Added Fortran 2008 bindings
— Removed C++ bindings; use C bindings from C++ instead
— MPIT Tool Interface - allows inspection of MPI internal variables
* Not the default implementation on Stampede, but can be used, e.q:
— module swap mvapich2/1.9a2 mvapich2-x/2.0b
— Some implementations may not be MPI-3 complete.

1/23/2017 www.cac.cornell.edu 74

Cornell University
Center for Advanced Computing

MPI_ COMM MPI Communicators

« Communicators
— Collections of processes that can communicate with each other
— Most MPI routines require a communicator as an argument
— Predefined communicator MPI_COMM_WORLD encompasses all tasks
— New communicators can be defined; any number can co-exist

« Each communicator must be able to answer two gquestions
— How many processes exist in this communicator?
— MPI_Comm_size returns the answer, say, N,
— Of these processes, which process (numerical rank) am 1?

— MPI_Comm_rank returns the rank of the current process within the communicator, an integer
between 0 and N -1 inclusive

— Typically these functions are called just after MPI_Init

1/23/2017 www.cac.cornell.edu 75

Cornell University
Center for Advanced Computing

MPI_ COMM C Example: param.c

#include <mpi.h>
main (int argc, char **argv) {
int np, mype, ierr;

ierr = MPI Init(&argc, &argv);
ierr MPI Comm size (MPI_ COMM WORLD, &np);
ierr = MPI Comm rank (MPI COMM WORLD, &mype) ;

MPI Finalize();

1/23/2017 www.cac.cornell.edu 76

Cornell University
Center for Advanced Computing

MPI_ COMM C++ Example: param.cc

#include "mpif.h"
[other includes]
int main(int argc, char *argv|[]) {
int np, mype, 1ierr;
[other declarations]

MPI: :Init(argc, argv);
np MPI::COMM WORLD.Get size();
mype = MPI:.:COMM WORLD.Get rank();

[actual work goes here]

MPI: :Finalize () ;

1/23/2017 www.cac.cornell.edu 77

Cornell University
Center for Advanced Computing

MPI_ COMM Fortran Example: param.f90

program param
include 'mpif.h'
integer ierr, np, mype

call mpi init(ierr)
call mpi comm size(MPI COMM WORLD, np , ierr)
call mpi comm rank (MPI COMM WORLD, mype, ierr)

call mpi finalize(ierr)
end program

1/23/2017 www.cac.cornell.edu 78

Cornell University
Center for Advanced Computing

Point to Point_ Communication Modes
Mode Pros cons

Synchronous — sending - Safest, therefore most portable Synchronization
and receiving tasks must - No need for extra buffer space overhead

‘handshake’. - SEND/RECYV order not critical

Ready- assumes that a - Lowest total overhead RECV must prec
‘ready to receive’ - No need for extra buffer space ede SEND
message has already - Handshake not required

been received.
Buffered — move datato - Decouples SEND from RECV Buffer copy

a buffer so process does - No sync overhead on SEND overhead

not wait. - Programmer controls buffer size

Standard — defined by - Good for many cases Your program
the implementer; meant - Small messages go right away may not be
to take advantage of the - Large messages must sync suitable

local system. - Compromise position

1/23/2017 www.cac.cornell.edu 79

Cornell University

Center for Advanced Computing

Point to Point C Example: oneway.c

#include "mpi.h"

main (int argc, char **argv) {
int ierr, mype, myworld; double a[2];
MPI Status status;
MPI Comm icomm = MPI COMM WORLD;

ierr = MPI Init(&argc, &argv);
ierr = MPI Comm rank (icomm, &mype) ;
ierr = MPI Comm size (icomm, &myworld);

if (mype == 0) {

a[0] = mype; a[l] = mype+l;

ierr = MPI Ssend(a,2,MPI DOUBLE,1l,9,icomm) ;
}
else if (mype == 1) {

ierr = MPI Recv(a,2,MPI DOUBLE,0,9,icomm,k &status) ;
printf ("PE %d, A array= %f %f\n" ,mype,a[0],a[l]);
}
MPI Finalize();

1/23/2017 www.cac.cornell.edu 80

Cornell University
Center for Advanced Computing

Point to Point Fortran Example: oneway.f90

program oneway
include "mpif.h"
real*8, dimension(2) :: A
integer, dimension(MPI_STATUS SIZE) :: istat
icomm = MPI COMM WORLD
call mpi init(ierr)
call mpi comm rank (icomm,mype,ierr)
call mpi comm size(icomm,np ,ierr);

if (mype.eq.0) then
a(l) = dble(mype); a(2) = dble (mype+l)
call mpi send(A,2,MPI REALS8,1,9,icomm,ierr)
else if (mype.eq.l) then
call mpi recv(A,2,MPI REAL8,0,9,icomm,istat,ierr)
print '("PE" ,i2," received A array =",2f8.4)' ,mype,A
endif
call mpi finalize (ierr)
end program

1/23/2017 www.cac.cornell.edu 81

Cornell University
Center for Advanced Computing

Collective C Example: allreduce.c

#include <mpi.h>

#define WCOMM MPI_COMM WORLD

main (int argc, char **argv) {
int npes, mype, ierr;
double sum, val; int calc, knt=1l;
ierr = MPI Init(&argc, é&argv);
ierr = MPI Comm size (WCOMM, é&npes);
ierr = MPI Comm rank (WCOMM, &mype) ;

val = (double)mype;
ierr = MPI Allreduce (
&val, &sum, knt, MPI_DOUBLE, MPI_ SUM, WCOMM) ;

calc = (npes-1 +npes%2)* (npes/2);

printf (" PE: %d sum=%5.0f calc=%d\n",mype,sum,calc);
ierr = MPI Finalize();

1/23/2017 www.cac.cornell.edu 82

Cornell University
Center for Advanced Computing

Collective Fortran Example: allreduce.f90

program allreduce
include 'mpif.h'

double precision :: val, sum
icomm = MPI COMM WORLD
knt = 1

call mpi init(ierr)
call mpi comm rank (icomm,mype,ierr)
call mpi comm size (icomm,npes,ierr)

val = dble (mype)
call mpi allreduce(val,sum,knt,MPI REAL8 MPI SUM,icomm, ierr)

ncalc = (npes-1 + mod(npes,2))* (npes/2)
print ' (" pe#",i5," sum =",£5.0, " calc. sum =",i5)"', &
mype, sum, ncalc
call mpi finalize (ierr)
end program

1/23/2017 www.cac.cornell.edu 83

Collective

1/23/2017

Cornell University
Center for Advanced Computing

<+—— process

PO
P1
P2
P3

PO
P1
P2

PO
P1
P2

The Collective Col

data —»

A A
broadcast A
A
A
AlB & | scatter A
ey |BH
, C
gather =
D
A allgather L
B | A|B|C|D
C A(B|C|D
D R | Bil:€i] o
AD | A1 | A2 | A3 ‘i AD | BO | CO | DO
alltcall
B0 |B1|B2|B3| A1 |B1 (C1| D1
co(Ci|C2(C3 A2 | B2 | C2 | D2
D0 (D1 | D2 | D3 A3 C3 | D3

PO
P1
P2
P3

PO| A
P1| B reduce
P2 | C ’
P3| D
PO| A
all
P18 reduce
P2 | C -
P3| D
PO A
P1| B[scan
P2 | C ’
P3| D
AD | A1 | A2 | A3
i P reduce
8o | B1 - scatter
co|C1|C2)|C3 .
D0 | D1 | D2 | D3

www.cac.cornell.edu

A-B-C-D

*s0me Op

erator

A-B-C-D

A-B-C-D

A-B-C-D

A-B-C-D

*:so0me Op

erator

A

AB

AB-C

A-B-C-D

*:some operator

A0-B0-C0-D0

A1-B1-C1-D1

A2-82-C2-D2

A3-83-C3-03

*some ope

rator

84

Cornell University
Center for Advanced Computing

References

 MPI standards
— http://www.mpi-forum.org/docs/
— Documents with marked-up changes available
— Latest version: http://mpi-forum.org/docs/mpi-3.1/index.htm
— Other mirror sites: http://www.mcs.anl.gov/mpi/

— Freely available implementations
* MPICH, http://www.mcs.anl.gov/mpi/mpich
* Open MPI, http://www.open-mpi.org

« CAC Virtual workshop: https://cvw.cac.cornell.edu/topics

 Books
— Using MPI, by Gropp, Lusk, and Skjellum
— MPI Annotated Reference Manual, by Marc Snir, et al
— Parallel Programming with MPI, by Peter Pacheco
— Using MPI-2, by Gropp, Lusk and Thakur

1/23/2017 www.cac.cornell.edu 85

http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://mpi-forum.org/docs/mpi-3.1/index.htm
http://www.mcs.anl.gov/mpi/
http://www.mcs.anl.gov/mpi/mpich
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
https://cvw.cac.cornell.edu/topics

Cornell University
Center for Advanced Computing

Heterogeneous Threading, Sequential

MPI process,
master thread

Generate
parallel region
#pragma omp parallel
do { C/C++
serial </—_\> _ #pragma omp single
work — idle { serialWork(); !
threads
#pragma omp for
for (i=0; i<N; i++){...}
}
workshare
on cpu
wait

1/23/2017 www.cac.cornell.edu 86

Cornell University
Center for Advanced Computing

Heterogeneous Threading, Concurrent

MPI process,
master thread

Generate
parallel region
#pragma omp parallel C/C++
serial { : :
_ #pragma omp single nowait
work; { serialWork(); }
nowait workshare
on Cpu #pragma omp for schedule (dynamic)
for (i=0; i<N; i++){...!
}
assist when

done in single

wait

1/23/2017 www.cac.cornell.edu 87

