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Big Plans for Intel’s New Xeon Phi Processor, KNL 
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HPC System Cori Trinity Theta* Stampede 2 

Sponsor DOE DOE DOE NSF 

Location NERSC Los Alamos Argonne TACC 

KNL Nodes 9,300 9,500 3,240 5,940 

Other Nodes 2,000 9,500 - - 

Total Nodes 9,500 19,000 3,240 5,940 

KNL DP FLOP/s 27.9 PF 30.7 PF 8.5 PF 18.1 PF 

Other DP FLOP/s 1.9 PF 11.5 PF - - 

Peak DP FLOP/s 29.8 PF 42.2 PF 8.5 PF 18.1 PF 

*Forerunner to Aurora: next-gen Xeon Phi,  50,000 nodes, 180 PF 



Definitions 

node 

One of the individual computers linked together by a network 

to form a parallel system. User access to a node is mediated 

by an operating system which runs on that node. One node 

may host several operating systems as virtual machines. 

cluster 
An architecture consisting of a networked set of nodes 

functioning as a single resource. 

processor 

The part of the computer that actually executes instructions. 

Commonly it refers to a single physical chip in a node. That 

chip may contain multiple cores or CPUs, each of which can 

execute operations independently. 

flop/s 

FLoating-point OPerations per Second. Used to measure a 

computer’s performance. It can be combined with common 

prefixes such as M=mega, G=giga, T=tera, and P=peta. 
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From the Cornell Virtual Workshop Glossary: 

https://cvw.cac.cornell.edu/main/glossary 

https://cvw.cac.cornell.edu/main/glossary


Xeon Phi: What Is It? 

• An x86-derived processor featuring a large number of cores 

– Many Integrated Core (MIC) architecture 

• An HPC platform geared for high floating-point throughput 

– Optimized for floating-point operations per second (flop/s) 

• Intel’s answer to general purpose GPU (GPGPU) computing 

– Similar flop/s/watt to GPU-based products like NVIDIA Tesla 

• Just another target for the compiler; no need for a special API 

– Compiled code includes instructions for 512-bit vector operations 

• Initially, a full system on a PCIe card (separate Linux OS, RAM)... 

• KNL: with “Knights Landing”, Xeon Phi can be the main CPU 
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Intel Xeon Phi 

“Knights Corner” 

(KNC) 



More Definitions 

core 

A processing unit on a computer chip capable of supporting a 

thread of execution. Usually “core” refers to a physical CPU in 

hardware. However, Intel processors can appear to have 2x or 

4x as many cores via “hyperthreading” or “hardware threads”. 

thread 

A portion of a process (running program) that is executing a 

sequence of instructions. It shares a virtual address space with 

other threads in the same process. 

vectorization 

A type of parallelism in which specialized vector hardware 

units perform numerical operations concurrently on fixed-size 

arrays, rather than on single elements. See SIMD. 

SIMD 

Single Instruction Multiple Data. It describes the instructions 

and/or hardware functional units that enable one operation to 

be performed on multiple data items simultaneously. 
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From the Cornell Virtual Workshop Glossary: 

https://cvw.cac.cornell.edu/main/glossary 
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And… Here It Is! But... How Did We Get Here? 

Intel Xeon Phi “Knights Landing” (KNL) 

– 72 cores maximum 

– Cores grouped in pairs (tiles)  

– 2 vector units per core 
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Processor Speed and Complexity Trends 
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Committee on Sustaining Growth in Computing Performance, National Research Council.  

“What Is Computer Performance?” 

In The Future of Computing Performance: Game Over or Next Level? 

Washington, DC: The National Academies Press, 2011. 

discontinuity in ~2004 



Moore’s Law in Another Guise 

• Moore’s Law is the observation that the number of transistors in an 

integrated circuit doubles approximately every two years 

– First published by Intel co-founder Gordon Moore in 1965 

– Not really a law, but the trend has continued for decades 

• So has Moore’s Law finally come to an end? Not yet! 

– Moore’s Law does not say CPU clock rates will double every two years 

– Clock rates have stalled at < 4 GHz due to power consumption 

– Only way to increase performance is through greater on-die parallelism 

• Microprocessors have adapted to power constraints in two ways 

– From a single CPU per chip to multi-core to many-core processors 

– From scalar processing to vectorized or SIMD processing 

– Not just an HPC phenomenon: such chips are in your laptop too! 
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Photo by TACC, June 2012 



Evolution of Vector Registers and Instructions 

• Core has 16 (SSE, AVX) or 32 (AVX-512) separate vector registers 

• In 1 cycle, both ADD and MUL units can do operations with registers 
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Processor Types in TACC’s Stampede, 2017 

 

Number of cores 

SIMD width (doubles) 

Multiply/add in 1 cycle 

Clock speed (Gcycle/s) 

DP Gflop/s/core 

DP Gflop/s/processor 
 

• Xeon is designed for all workloads; high single-thread performance  

• Xeon Phi is general purpose, too; optimized for number crunching 

– High aggregate throughput via lots of weaker threads, more SIMD 

– Possible to get 2–8x performance compared to dual E5 CPUs 

Xeon E5 KNC KNL 

8 61 68 

4 8 8 x 2 

x 2  x 2  x 2 

2.7 1.01 1.4 

21.6 16.2 44.8 

173 988 3046 
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Two Types of Xeon Phi (and Xeon) Parallelism 

• Threading (task parallelism) 

– OpenMP, Intel Threading Building Blocks, Intel Cilk Plus, Pthreads, etc. 

– It’s all about sharing work and scheduling  
 

• Vectorization (data parallelism) 

– “Lock step”, Instruction Level Parallelism (SIMD) using vector operands 

– Compiler generates instructions for synchronized execution 

– It’s all about finding simultaneous operations 
 

• To utilize Xeon Phi fully, both types of parallelism must be exposed! 

– With 2–4 threads per core, can get 60x single-threaded performance 

– Vectorized loops gain 8x or 16x performance on Xeon Phi! 

– Important for CPUs as well: vectorized loops gain 4x or 8x on Xeon E5 

– Question for later: can vector units be fed with data fast enough? 
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Task (Functional) Parallelism 

• Each worker performs a separate task by working on a completely 

different “function”, or just by executing code sections that are 

independent 
 

• Analogy: 2 brothers do yard work 

– 1 edges, 1 mows 
 

• Analogy: 8 farmers build a barn 

– 1 saws the wood 

– 2 hammer in the nails, etc. 
 

• Commonly programmed with: 

– Message-passing libraries like MPI 

– Threading libraries like OpenMP 
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Data Parallelism 

• Each worker does the exact same task on unique and independent 

groups of data 
 

• Analogies: 

– 2 brothers mow the lawn 

– 8 farmers paint a barn 
 

• Vectorizes well! 

– Naturally expressed as SIMD 

– Load balancing is precise 
 

• MPI, OpenMP also work well 

– Assign different datasets to workers 

– Workers are MPI processes or OpenMP threads 
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What About Those Non-Parallel Parts? 

• All parallel programs contain: 

– Parallel sections (we hope!) 

– Serial sections (unfortunately) 

– In our analogy: the farmers must meet to decide who is painting where! 

• Serial sections limit the parallel effectiveness 

  serial part parallel part 

 1 task      

 2 tasks    

  

      4 tasks      

        

• Amdahl’s Law quantifies this limit 
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Amdahl’s Law 

• For large N, the parallel speedup doesn’t asymptote to N, but to a 

constant 1/a, where a is the serial fraction of the work 

• The graph below compares perfect speedup (green) with maximum 

speedup of code that is 99.9%, 99% and 90% parallelizable 

Speedup = S(N) = T(1)/T(N) 

S(N) = (p + s)/(p/N + s) 

Define a = s/(s+p) 

S(N) = N/[1+(N-1)a] 

For large N, S(N) -> 1/a 

T(N) = total time = p/N + s 

     p = parallel workload  

     s = serial time 
 

S(N) = speedup = T(1)/T(N) 

     = (p + s)/(p/N + s) 
 

If a = s/(p + s), then 

S(N) = 1/[(1-a)/N + a] 

     -> 1/a for large N 
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“Embarrassingly Parallel” – the Ideal? 

• Workers are so independent that they have no need to coordinate 

– Also called “pleasingly parallel” (Why be embarrassed? You win!) 

– Special case of data parallelism 

– “Master” may assign the tasks 
 

• Examples:  

– Monte Carlo simulations 

– Parameter sweeps 

– ATM transactions 
 

• Programming is fairly easy 

– MPI, OpenMP, or even just a top-level script 

– Stampede provides a special framework for running this type of job 

without any parallel programming; see “module spider pylauncher” 
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Hands-on Session 

Goals 

1. Start an interactive session on a KNL compute node 

– Assumption: you are already logged in to the KNL login node 

2. Compile and run a simple code parallelized with OpenMP 

– For fun: play with the OMP_NUM_THREADS environment variable 

– We will take some time for discussion after this step 

3. Change the OpenMP directive so the code behaves unpredictably! 

– Don’t terminate your interactive session until this step is completed 

 

To start: 

tar xvf ~tg459572/LABS/cornellcac_labs.tar 

cd knl_intro 
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The Parallel Section of omp_hello.c 
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#pragma omp parallel private(tid) 

{ 

   tid = omp_get_thread_num(); 

   printf("  => hello from thread id  %3.3d\n", tid); 

} 
 

• The line preceding {...} is an OpenMP directive. 

• This tells the compiler to insert special instructions that will cause 

identical copies of {...} to run in parallel on every thread. 

• We specify one variable “tid” to be private to each thread. 

– By default, variables are shared by all threads and are not copied. 

• Its value is set by an OpenMP function that returns the thread id. 



1. Start an Interactive KNL Session  

Only compute nodes have KNL processors – the login node does not. 

To get a 30-minute interactive session on a development node, type: 
 

idev -r -A TG-TRA140011 
 

You will see SLURM-related output scroll by, followed by a prompt on a 

compute node. Your node should be part of the reservation (-r) for this 

workshop. If no nodes are left (unlikely), try a different queue: 
 

idev -p development -A TG-TRA140011 
 

Check queue status as necessary with: 
 

sinfo -o "%20P %5a %.10l %16F" 
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2. Compile and Run the Simple OpenMP Code 

Compile the code with -xMIC-AVX512, which is the option to use for 

any code that you ultimately want to run on the KNL compute nodes: 
 

icc -qopenmp -xMIC-AVX512 omp_hello.c -o omp_hello 
 

Set the number of threads to the number of cores and run the code: 
 

export OMP_NUM_THREADS=68 

./omp_hello | sort 
 

Repeat with the variable set to the number of hardware threads, 4 x 68: 
 

export OMP_NUM_THREADS=272 

./omp_hello | sort 
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Discussion Questions 

• Is the omp_hello program task parallel, data parallel, or 

“embarrassingly parallel”? 

– Are all the workers using the same set of instructions? 

– Do the workers have to coordinate among each other? 

– Careful! How do all the workers write to a single output stream? 
 

• Is the code affected by Amdahl’s Law? 

– Are there any serial sections? 

– Careful! Is the parallel section really being divided among the workers? 
 

• Do you think it’s possible to beat Amdahl’s Law? 

– What if the workload grows along with N, the number of workers? 

– Which is better: N times the work in fixed time T, or fixed work in T/N? 
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Challenges of Parallel Programming 
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• What happens if we fail to make “tid” a private variable? 

– All the threads compete to write their id into the shared location! 

– This is known as a “race condition” – the results are not predictable 
 

• Writing a correct parallel application can be tricky! 

– Order of completion of tasks must not be allowed to affect results 

– Workers need private memory, occasional synchronization 
 

• Writing a correct and effective parallel application can be difficult! 

– Synchronization and private memory add to the overhead costs 

– Workers must wait at synchronization points if the load is unbalanced 

– Serial sections limit the parallel speedup due to Amdahl’s Law 

– Such sources of parallel overhead and inefficiency must be minimized 



3. Change the Code to Make It Unpredictable 
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• Use an editor (nano, vi, emacs) to remove the private(tid) clause 
 

#pragma omp parallel private(tid) 

{ 

   tid = omp_get_thread_num(); 

   printf("  => hello from thread id  %3.3d\n", tid); 

} 

printf("  x> goodbye from thread id  %3.3d\n", tid); 
 

• Recompile, export OMP_NUM_THREADS=68, run multiple times 

• See if a race condition results on the last line! 

• When you are done, terminate your session by typing Ctrl-d 



Hardware Designers Face the Same Issues 

• Think of modern processors as a collection of parallel workers 

– Multiple cores all operate in parallel; so do their vector units 

• It is convenient to let workers share data, but there are problems too 

– Finding the desired items among many gigabytes of data is slow 

– What if two workers need the same item at the same time? 

• Solution: cache memory 

– Workers keep private copies of the main memory they need to use 

– Access to these smaller, local caches is much faster than RAM 

• Cache coherence prevents race conditions 

– Two workers cannot both alter local copies of the same main memory 

– Built-in hardware mechanisms keep all the caches in agreement 

• It works best to have multiple levels of cache: a memory hierarchy 
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Memory Hierarchy in Stampede’s KNLs 
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• 96 GB DRAM (max is 384) 

– 6 channels of DDR4 

– Bandwidth up to 90 GB/s 

• 16 GB high-speed MCDRAM 

– 8 embedded DRAM controllers 

– Bandwidth up to 475 GB/s 

• 34 MB shared L2 cache 

– 1 MB per tile, 34 tiles (max is 36) 

– 2D mesh interconnection 

• 32 KB L1 data cache per core 

– Local access only 

• Data travel in 512-bit cache lines 



The New Level: On-Package Memory 

• KNL includes 16 GB of high-speed multi-channel dynamic 

RAM (MCDRAM) on the same package with the processor 

• Up to 384 GB of standard DRAM is accessible through 3,647 pins at 

the bottom of the package (in the new LGA 3647 socket) 
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Omni-Path 

connector 



How Do You Use MCDRAM? Memory Modes 

• Cache 

– MCDRAM acts as L3 cache 

– Direct-mapped associativity 

– Transparent to the user 

• Flat 

– MCDRAM, DDR4, are all just 

RAM; different NUMA nodes 

– Use numactl or memkind 

library to manage allocations 

• Hybrid 

– Choice of 25% / 50 % / 75 % 

of MCDRAM set up as cache 

– Not supported on Stampede 
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Where Do You Look for an L2 Miss? Cluster Modes 

• All-to-all: request may have to traverse the entire mesh to reach the 

tag directory, then read the required cache line from memory 

• Quadrant: data are found in the same quadrant as the tag directory 

• Sub-NUMA-4: like having 4 separate sockets with attached memory 
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This Is How the Batch Queues Got Their Names! 

• Stampede’s batch system is SLURM 

– Start interactive job with idev, OR... 

– Define batch job with a shell script 

– Submit script to a queue with sbatch 

• Jobs are submitted to specific queues 

– Option -p stands for “partition” 

– Partitions are named for modes: 

Memory-Cluster 

– Development and normal partitions = 

Cache-Quadrant 

• View job and queue status like this: 

squeue -u <my_username> 

sinfo | cut -c1-44 
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Queues (Partitions) # 

development* 16 

normal 376 

Flat-Quadrant 96 

Flat-SNC-4 8 

Flat-All2All 8 

- Total - 504 

systest (restricted) 508 



Conclusions: HPC in the Many-Core Era 

• HPC has moved beyond giant clusters that rely on coarse-grained 

parallelism and MPI (Message Passing Interface) communication 

– Coarse-grained: big tasks are parceled out to a cluster 

– MPI: tasks pass messages to each other over a local network 

• HPC now also involves many-core engines that rely on fine-grained 

parallelism and SIMD within shared memory 

– Fine-grained: threads run numerous subtasks on low-power cores 

– SIMD: subtasks act upon multiple sets of operands simultaneously 

• Many-core is quickly becoming the norm in laptops, other devices 

• Programmers who want their code to run fast must consider how 

each big task breaks down into smaller parallel chunks 

– Multithreading must be enabled explicitly through OpenMP or an API 

– Compilers can vectorize loops automatically, if data are arranged well 
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