
Workshop: Parallel Computing on Stampede, June 11, 2013
Based on materials developed by CAC and TACC

Steve Lantz

Center for Advanced Computing

Cornell University

Hybrid Parallel Overview

2

RAM Arrangement on Stampede

• Many nodes distributed memory

– each node has its own local memory

– not directly addressable from other nodes

• Multiple sockets per node

– each node has 2 sockets (chips)

• Multiple cores per socket

– each socket (chip) has 8 cores

• Memory spans all 16 cores shared memory

– node’s full local memory is addressable from any core in any socket

• Memory is attached to sockets

– 8 cores sharing the socket have fastest access to attached memory

– we are ignoring the attached MIC coprocessors for the moment…

CPU CPU

CPU CPU

CPU CPU

CPU CPU RAM

CPU CPU

CPU CPU

CPU CPU

CPU CPU RAM

3

How do we deal with NUMA (Non-Uniform Memory Access)?

Standard models for parallel programs assume a uniform architecture –

• Threads for shared memory

– parent process uses pthreads or OpenMP to fork multiple threads

– threads share the same virtual address space

– also known as SMP = Symmetric MultiProcessing

• Message passing for distributed memory

– processes use MPI to pass messages (data) between each other

– each process has its own virtual address space

If we attempt to combine both types of models –

• Hybrid programming

– try to exploit the whole shared/distributed memory hierarchy

Dealing with NUMA

4

Why hybrid?

• Eliminates domain decomposition at node level

• Automatic memory coherency at node level

• Lower (memory) latency and data movement within node

• Can synchronize on memory instead of barrier

Why not hybrid?

• An SMP algorithm created by aggregating MPI parallel components on

a node (or on a socket) may actually run slower

• Possible waste of effort

Why Hybrid? Or Why Not?

5

Motivation for Hybrid

• Balance the computational load

• Reduce memory traffic, especially for memory-bound applications

6

Two Views of a Node

C
P

U

OpenMP

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

MPI

0 1

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

7

Two Views = Two Ways to Write Parallel Programs

• OpenMP (or pthreads) only

– launch one process per node

– have each process fork one thread (or maybe more) per core

– share data using shared memory

– can’t share data with a different process (except maybe via file I/O)

• MPI only

– launch one process per core, on one node or on many

– pass messages among processes without concern for location

– (maybe create different communicators intra-node vs. inter-node)

– ignore the potential for any memory to be shared

• With hybrid OpenMP/MPI programming, we want each MPI process

to launch multiple OpenMP threads that can share local memory

8

Some Possible MPI + Thread Configurations

• Treat each node as an SMP

– launch a single MPI process per node

– create parallel threads sharing full-node memory

– typically want 16 threads/node on Stampede, e.g.

• Treat each socket as an SMP

– launch one MPI process on each socket

– create parallel threads sharing same-socket memory

– typically want 8 threads/socket on Stampede, e.g.

• No SMP, ignore shared memory (all MPI)

– assign an MPI process to each core

– in a master/worker paradigm, one process per node may be master

– not really hybrid, may at least make a distinction between nodes

9

Creating Hybrid Configurations

To achieve configurations like these, we must be able to:

• Assign to each process/thread an affinity for some set of cores

• Make sure the allocation of memory is appropriately matched

Master MPI Process + Worker Thread

Single MPI Process on Core

16 MPI Tasks
1 MPI Task
16 Threads/Task

2 MPI Tasks
8 Threads/Task

Worker Thread for Master MPI Process

Pure SMP Node Pure MPI Node

10

NUMA Operations

Where do processes, threads, and memory allocations get assigned?

• If memory were completely uniform, there would be no need to worry

about questions like, “where do processes go?”

• Only for NUMA is the placement of processes/threads and allocated

memory (NUMA control) of any importance

The default NUMA control is set through policy

• The policy is applied whenever a process is executed, or a thread is

forked, or memory is allocated

• These are all events that are directed from within the kernel

 NUMA control is managed by the kernel.

 NUMA control can be changed with numactl.

11

Process Affinity and Memory Policy

• One would like to set the affinity of a process for a certain socket or

core, and the allocation of data in memory relative to a socket or core

• Individual users can alter kernel policies

(setting Process Affinity and Memory Policy == PAMPer)

– users can PAMPer their own processes

– root can PAMPer any process

– careful, libraries may PAMPer, too!

• Means by which Process Affinity and Memory Policy can be changed:

1. dynamically on a running process (knowing process id)

2. at start of process execution (with wrapper command)

3. within program through F90/C API

12

8,9,10,11,
12,13,14,15

0,1,2,3,
4,5,6,7

0 1

Using numactl, at the Process Level

For a Process:

Socket Control

For a Process’s Memory:

Socket Control

For a Process:

Core Control

socket assignment

-N

memory allocation

-l -i --preferred -m

(local, interleaved, preferred,

mandatory)

core assignment

-C

numactl <option socket(s)/core(s)> ./a.out

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

0 1 0 1

RAM RAM

0 1

13

Socket

Affinity
-N {0,1}

Execute process on cores of this

(these) socket(s) only.

Memory

Policy
-l no argument

Allocate on current socket;

fallback to any other if full.

Memory

Policy
-i {0,1}

Allocate round robin (interleave)

on these sockets. No fallback.

Memory

Policy
--preferred=

{0,1}

select one

Allocate on this socket; fallback to

any other if full.

Memory

Policy
-m {0,1}

Allocate only on this (these)

socket(s). No fallback.

Core

Affinity
-C

{0,1,2,3,4,5,6,7,

8,9,10,11,12,13,

14,15}

Execute process on this (these)

core(s) only.

Quick Guide to numactl

14

job script (Bourne shell) job script (C shell)

#SBATCH -n 2 -N 2 #SBATCH -n 2 -N 2

... ...

export OMP_NUM_THREADS=16 setenv OMP_NUM_THREADS 16

... ...

ibrun numactl -i all ./a.out ibrun numactl -i all ./a.out

SMP Nodes

Hybrid batch script for 16 threads/node

• Specify total MPI tasks to be started by batch

• Specify total nodes equal to tasks

• Set number of threads for each process

• PAMPering at job level

– controls behavior (e.g., process-core affinity) for ALL processes

– no simple/standard way to control thread-core affinity with numactl

15

SMP Sockets

Hybrid batch script for 2 tasks/node, 8 threads/task

• Specify total MPI tasks to be started by batch

• Specify total nodes equal to tasks/2 (so 2 tasks/node)

• Set number of threads for each process

• PAMPering at process level, must create script to manage affinity

– tacc_affinity script pins tasks to sockets, ensures local memory allocation

– use it as a numactl starting point if it’s not quite right for your application

job script (Bourne shell) job script (C shell)

#SBATCH -n 4 -N 2 #SBATCH -n 4 -N 2

... ...

export OMP_NUM_THREADS=8 setenv OMP_NUM_THREADS 8

... ...

ibrun tacc_affinity ./a.out ibrun tacc_affinity ./a.out

16

Basic Hybrid Program Template

Start with MPI initialization MPI_Init

...

(Serial regions are executed by the

master thread of the MPI process)

MPI_Call

...

Create OMP parallel regions within

each MPI process

OMP parallel

...

– MPI calls may be allowed here too

– MPI rank is known to all threads

MPI_Call

...

 end parallel

...

Call MPI in single-threaded regions MPI_Call

...

Finalize MPI MPI_Finalize

17

Types of MPI Calls Among Threads

Single-threaded messaging

• Call MPI from a serial region

• Call MPI from a single thread

within a parallel region

Multi-threaded messaging

• Call MPI from multiple threads

within a parallel region

• Requires an implementation of

MPI that is thread-safe

Rank to rank

rank-thread ID to rank-thread ID

Node Node

Node Node

18

Multiple Threads Calling MPI

• Thread ID as well as rank can be used in communication

• Technique is illustrated in multi-thread “ping” (send/receive) example

19

call mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided, ierr)

call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)

call mpi_comm_size(MPI_COMM_WORLD, nranks, ierr)

if (iprovided >= MPI_THREAD_MULTIPLE) then ! All threads can call MPI

!$OMP parallel private(j, ithread, nthreads)

 nthreads=OMP_GET_NUM_THREADS()

 ithread =OMP_GET_THREAD_NUM()

 call pwork(ithread, irank, nthreads, nranks…)

 if(irank == 0) then

 call mpi_send(ithread,1,MPI_INTEGER, 1, ithread, MPI_COMM_WORLD, ierr)

 else

 call mpi_recv(j,1,MPI_INTEGER, 0, ithread, MPI_COMM_WORLD, istat, ierr)

 print*, "Yep, this is ",irank," thread ", ithread," I received from ", j

 endif

!$OMP end parallel

endif

Communicate between ranks.

Threads use tags to differentiate.

Example: Multiple Threads Calling MPI

20

NUMA Control in Code, at the Thread Level

• Within a code, Scheduling Affinity and Memory Policy (SCAMPer?)

can be examined and changed using libnuma routines:

– sched_getaffinity, sched_setaffinity

– get_mempolicy, set_mempolicy

• This is the only way to set affinities and policies that differ per thread

• To make scheduling assignments, set bits in a mask:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Assignment to Core 0

Assignment to Core 15

Assignment to Core 0 or 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

21

Code Example for Scheduling Affinity

...

#include <spawn.h> //C API parameters and prototypes

...

int icore=3; //Set core number

cpu_set_t cpu_mask; //Allocate mask

...

CPU_ZERO(&cpu_mask); //Set mask to zero

CPU_SET(icore,&cpu_mask); //Set mask with core #

err = sched_setaffinity((pid_t)0 , //Set the affinity

 sizeof(cpu_mask),

 &cpu_mask);

Programming for MIC: Hybrid and Heterogeneous

• Each Stampede node currently has 2 processors + 1 MIC card

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card that

features >60 cores; released as Xeon Phi™

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA

– Answers the question: if 8 modern Xeon cores fit on a die, how many

early Pentiums would fit?

• MIC answers CUDA’s API problem: just compile like any normal code

– Instruction set is x86 with support for 64-bit addressing

– Recent x86 extensions may not be available

– Developers use familiar Intel compilers, libraries, and tools

• However, MIC adds yet another level of programming complexity

– Stampede is a multi-core machine where not all the cores are the same

12/11/2012 www.cac.cornell.edu 22

MIC Strategies for HPC Codes

12/11/2012

No change –

run on CPUs,

MICs, or both

Expand existing

hybrids; or, add

OpenMP offload

Build on libraries

like Intel MKL,

PETSc, etc.

Initial MPI code,

could be hybrid

with OpenMP

www.cac.cornell.edu 23

OpenMP Offload Constructs: Base Program

• Objective: offload foo to

a device

• Use OpenMP to do the

offload

12/11/2012

#include <omp.h>
#define N 10000

void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...

 foo(a,b,c,N);
}

void foo(double *a, double *b, double *c, int n){
 int i;

 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

www.cac.cornell.edu 24

OpenMP Offload Constructs: Requirements

• Direct (Intel) compiler to

offload function or block

• “Decorate” function and

prototype

• Ideally, familiar-looking

OpenMP directives work

on device

12/11/2012

#include <omp.h>
#define N 10000
#pragma <offload_function_spec>
void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...
 #pragma <offload_this>
 foo(a,b,c,N);
}
#pragma <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
 int i;
 #pragma omp parallel for
 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

www.cac.cornell.edu 25

Pros and Cons of MIC Programming Models

• Offload engine: MIC serves as coprocessor for the host

– Pros: distinct hardware gets distinct role; programmable via simple calls

to a library such as MKL, or via directives (we’ll go into depth on this)

– Cons: PCIe is the only path for most work; difficult to retain data on card

• “Symmetric” #1: Everything is just an MPI core

– Pros: MPI works for all cores (though 1 MIC core < 1 server core)

– Cons: memory may be insufficient to support a mOS plus lots of data;

fails to take good advantage of shared memory; PCIe is a bottleneck

• “Symmetric” #2: MIC and host are just different SMPs

– Pros: MPI/OpenMP works for both host and MIC; more efficient use of

limited PCIe bandwidth and limited MIC memory

– Cons: hybrid programming is already tough on homogeneous SMPs; not

much experience with OpenMP-based hybrids scaling to 60+ cores

12/11/2012 www.cac.cornell.edu 26

Quick Guide to KMP_AFFINITY

• Set this environment variable to influence thread affinity generally

• Useful for CPU and/or MIC models based on OpenMP (SMP, offload)

export KMP_AFFINITY=<type> (for SMP)

export MIC_KMP_AFFINITY=<type> (for offload)

27

Type Effect

compact Pack threads close to each other.

explicit Use the proclist modifier to pin threads.

none Does not pin threads.

scatter Round-robin threads to cores.

balanced (Phi only) Use scatter, but keep OMP thread ids consecutive.

KMP_AFFINITY Types and Thread Placement

28

• Imagine a system with 4 cores and 4 hardware threads /core

• Placement of 8 threads is illustrated for the 3 types

• Compact type does not fully utilize all cores; not recommended

Roadmap: What Comes Next?

• Expect many of the upcoming large systems to be accelerated

• MPI + OpenMP will be the main HPC programming model

– If you are not using Intel TBBs or Cilk

– If you are not spending all your time in libraries (MKL, etc.)

• Many HPC applications are pure-MPI codes

– Start thinking about upgrading to a hybrid scheme

– Adding OpenMP is a larger effort than adding MIC directives

• Special MIC/OpenMP considerations

– Many more threads will be needed:

60+ cores on production Xeon Phi™ ➞ 60+/120+/240+ threads

– Good OpenMP scaling (and vectorization) are much more important

12/11/2012 www.cac.cornell.edu 29

30

Conclusions

• On heterogeneous NUMA systems like Stampede, placement and

binding of processes and their associated memory are important

performance considerations.

• Process Affinity and Memory Policy have a significant effect on pure

MPI, pure OpenMP, and Hybrid codes.

• Simple numactl commands and APIs allow users to control affinity of

processes and threads and memory assignments.

• Future prospects for hybrid programming:

– Core counts will increase on both processors and coprocessors.

– Even more effort will be focused on process scheduling and data locality.

– Expect to see more multi-threaded libraries; be alert for their potential

interaction with your own multithreading strategy.

31

References

• Yun (Helen) He and Chris Ding, Lawrence Berkeley National

Laboratory, June 24, 2004: Hybrid OpenMP and MPI Programming

and Tuning (NUG2004).

 www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt

• Texas Advanced Computing Center: Stampede User Guide, see

numa section. www.tacc.utexas.edu/services/userguides/stampede

• Message Passing Interface Forum: MPI-2: MPI and Threads (specific

section of the MPI-2 report).

 http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node162.htm

• Intel Corp.: Thread Affinity Interface (Linux and Windows), from the

Intel Fortran Compiler User and Reference Guides.

 http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/extfile/

 optaps_for/common/optaps_openmp_thread_affinity.htm

http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.tacc.utexas.edu/services/userguides/stampede
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

Extra Slides: MPI-2 and Multithreading

32

33

• Consider thread safety when calling MPI from threads

• Use MPI_Init_thread to select/determine the level of thread support

– Supported in MPI-2, substitute for the usual MPI_Init

• Thread safety is identified/controlled by MPI’s provided types

– Single means no multi-threading

– Funneled means only the master thread can call MPI

– Serialized means multiple threads can call MPI,

 but only 1 call can be in progress at a time

– Multiple means MPI is thread safe

• Monotonic values are assigned to parameters

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED

< MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

MPI-2 and Thread Safety

34

MPI-2’s MPI_Init_thread

• Input: rqd, or “required” (integer)

– Indicates the desired level of thread support

• Output: pvd, or “provided” (integer)

– Indicates the available level of thread support

• If thread level rqd is supported, the call returns pvd = rqd

• Otherwise, pvd returns the highest provided level of support

call MPI_Init_thread(irqd, ipvd, ierr)

int MPI_Init_thread (int *argc, char ***argv, int rqd, int *pvd)

int MPI::Init_thread(int& argc, char**& argv, int rqd)

Syntax:

35

MPI-2 Thread Support Levels

Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED

Process may be multi-threaded,

but only the main thread will make

MPI calls (calls are “funneled” to

main thread). *Default*

MPI_THREAD_SERIALIZE

Process may be multi-threaded,

and any thread can make MPI

calls, but threads cannot execute

MPI calls concurrently; they must

take turns (calls are “serialized”).

MPI_THREAD_MULTIPLE
Multiple threads may call MPI, with

no restriction.

36

Fortran C

include 'mpif.h'

program hybsimp

call MPI_Init(ie)

call MPI_Comm_rank(...irk,ie)

call MPI_Comm_size(...isz,ie)

!Setup shared mem, comp/comm

!$OMP parallel do

 do i=1,n

 <work>

 enddo

!Compute & communicate

call MPI_Finalize(ierr)

end

#include <mpi.h>

int main(int argc,

 char **argv) {

int rank, size, ie, i;

ie= MPI_Init(&argc,&argv[]);

ie= MPI_Comm_rank(...&rank);

ie= MPI_Comm_size(...&size);

//Setup shared mem, comp/comm

#pragma omp parallel for

 for(i=0; i<n; i++){

 <work>

 }

// compute & communicate

ie= MPI_Finalize();

}

Example: Single-Threaded MPI Calls

37

Funneled MPI Calls via Master

• Must have support for MPI_THREAD_FUNNELED or higher

• Best to use OMP_BARRIER

– there is no implicit barrier in the master workshare construct,

OMP_MASTER

– in the example, the master thread will execute a single MPI call within the

OMP_MASTER construct

– all other threads will be sleeping

38

Example: Funneled MPI Calls via Master

Fortran C

include 'mpif.h'

program hybmas

!$OMP parallel

 !$OMP barrier

 !$OMP master

 call MPI_<Whatever>(...,ie)

 !$OMP end master

 !$OMP barrier

!$OMP end parallel

end

#include <mpi.h>

int main(int argc,

 char **argv) {

int rank, size, ie, i;

#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp master

 {

 ie= MPI_<Whatever>(...);

 }

 #pragma omp barrier

}

}

39

Serialized MPI Calls and OpenMP

• Must have support for MPI_THREAD_SERIALIZED or higher

• Best to use OMP_BARRIER only at beginning, since there is an

implicit barrier in the SINGLE workshare construct, OMP_SINGLE

– Example is the simplest one: any thread (not necessarily master)

will execute a single MPI call within the OMP_SINGLE construct

– All other threads will be sleeping

40

Example: Serialized MPI Calls and OpenMP

Fortran C

include 'mpif.h'

program hybsing

call MPI_Init_thread(&

MPI_THREAD_SERIALIZED,ipvd,ie)

!$OMP parallel

 !$OMP barrier

 !$OMP single

 call MPI_<Whatever>(...,ie)

 !$OMP end single

 !Don't need OMP barrier

!$OMP end parallel

end

#include <mpi.h>

int main(int argc,

 char **argv) {

int rank, size, ie, i;

ie= MPI_Init_thread(

MPI_THREAD_SERIALIZED,ipvd);

#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp single

 {

 ie= MPI_<Whatever>(...);

 }

 //Don't need omp barrier

}

}

41

Overlapping Work & MPI Calls

• One core is capable of saturating the lanes of the PCIe network link...

– Why use all cores to communicate?

– Instead, communicate using just one or several cores

– Can do work with the rest during communication

• Must have support for MPI_THREAD_FUNNELED or higher to do

this

• Can be difficult to manage and load-balance!

42

Example: Overlapping Work & MPI Calls

Fortran C

include 'mpif.h'

program hybsing

!$OMP parallel

 if (ithread .eq. 0) then

 call MPI_<Whatever>(...,ie)

 else

 <work>

 endif

!$OMP end parallel

end

#include <mpi.h>

int main(int argc,

 char **argv) {

int rank, size, ie, i;

#pragma omp parallel

{

 if (thread == 0){

 ie= MPI_<Whatever>(...);

 }

 if(thread != 0){

 <work>

 }

}

}

