9eare Cornell University

7 Center for Advanced Computing

OpenMP (with Labs)

Philip Y. Nee
Cornell CAC

Parallel Computing at TACC: Stampede

June 11, 2013
Based on materials developed by Kent Milfeld at TACC



o7 Cornell University
@E) Center for Advanced Computing

Multithreading

« A programming model that allows multiple threads to exist in a
single process, sharing the same memory space

 Thread — A single sequence of programming instructions

*  Why multithreading?

— Speedup — For an application that scales well, the speedup increases
linearly with number of threads, theoretically

6/11/2013 www.cac.cornell.edu 2



e Cornell University

7 Center for Advanced Computing

Goal

* In this talk, you will learn how to:
— Parallelize portions of your application
— Use the OpenMP API
— Avoid common pitfalls in shared memory programming

6/11/2013 www.cac.cornell.edu 3



(EFTU‘ Cornell University

2J§ Center for Advanced Computing

What is OpenMP?

 OpenMP is an acronym for Open Multi-Processing

« An Application Programming Interface (API) for developing
multithreading parallel program in shared memory architecture

* Three primary components of the API are:
— Compiler Directives
— Runtime Library Routines
— Environment Variables

 OpenMP standard is maintained by the OpenMP Architecture
Review Board

e http://www.openmp.org/ has the specification, examples, tutorials
and documentation

6/11/2013 www.cac.cornell.edu



http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Ejﬂ Cornell University

2J§ Center for Advanced Computing

OpenMP Fork-Join Parallelism

* Programs begin as a single process: master thread

» Master thread executes until a parallel region is encountered
— Master thread creates (forks) a team of parallel threads
— Threads in team simultaneously execute tasks in the parallel region
— Team threads synchronize and terminate (join); master continues

time
Parallel Serial Parallel Serial

: Serial
execution @ ® © g_o
®— | O—

4 threads ‘\/‘ 4 threads
e.g.,
4-thread

execution Master Thread Multi-Threaded

6/11/2013 www.cac.cornell.edu 5



(EFTU‘ Cornell University

2J§ Center for Advanced Computing

LAB: OMP Hello World

Parallel Region: C/C++ and Fortran

1 |#pragma omp parallel !Somp parallel

2 { code block code block

3 a = work(...); call work(...)

4| } 'Somp end parallel
Line 1 Team of threads is formed at parallel region

Lines 2—3 Each thread executes code block and subroutine call, no
branching into or out of a parallel region

Line 4 All threads synchronize at end of parallel region (implied
barrier)

6/11/2013 www.cac.cornell.edu 6



o7 Cornell University
@E) Center for Advanced Computing

OpenMP: Multithreading

« All about executing concurrent work (tasks)
— Tasks execute independently
— Tasks access the same shared memory
— Shared variable updates must be mutually exclusive
— Synchronization through barriers

// repetitive work // repetitive updates
#pragma omp parallel for #pragma omp parallel for
for (i=0; i<N; i++) for (i1=0; i<N; i++)

a[i] = b[i] + c[1i]; sum = sum + b[i]*c[i];

6/11/2013 www.cac.cornell.edu 7



Cornell University

Center for Advanced Computing

OpenMP: Shared Memory Systems

Software Model:
Threads in
| Parallel Region

Hardware Model:
Multiple Cores

1 1 1

|
Thread Thread Thread Thread
1 2 a.out 0 1 2 M-1

Thread Thread Thread Thread
M M+1 M+2 2M-1

= accessible by
all threads

= private memory

for thread x




Ejﬂ Cornell University

2J§ Center for Advanced Computing

Thread Memory Access

« Every thread has access to “global” (shared) memory
— All threads share the same address space
— Threads don’t communicate like MPI processes
« But need to avoid race conditions with shared memory. Examples:
1. If multiple writers are going in no particular order, last writer “wins”
2. A reader may either precede or follow a writer — lack of synchronization
3. Threads may overlap in a code block, causing conditions 1 and 2
« What do you with a race condition?
— Don’t introduce one in the first place: it's a bug, hard to debug
— Impose order with barriers (explicit/implicit synchronization)

— Use mutual exclusion (mutex) directives to protect critical sections,
where one thread must run at a time (at a performance penalty)

6/11/2013 www.cac.cornell.edu



Cornell University
t:) Center for Advanced Computing

Example of a Critical Section

Intended Possible..
-- --

read

increment 0 read — 0

write — 1 increment read — 0

read <« 1 write — increment 1

increment 1 write — 1

write — 2 1

* In a critical section, need mutual exclusion to get intended result
* The following OpenMP directives prevent this race condition:

#pragma omp critical — for a code block (C/C++)
#pragma omp atomic — for single statements

6/11/2013 www.cac.cornell.edu 10



5[ Cornell University

Center for Advanced Computing

OpenMP Directives

* OpenMP directives:

— specify parallelism for shared-memory parallel (SMP) machines
— Appear like comments in source code
« FORTRAN compiler: ! SOMP, C$OMP, or *$SOMP — use ! SOMP for
free-format FOO

« C/C++ compiler directive: #pragma omp

C/C++ Fortran 90
#pragma omp parallel 1SOMP parallel
{... e
} 'SOMP end parallel
#pragma omp parallel for 1SOMP parallel do
for(...){... DO ...
} ISOMP end parallel do

6/11/2013 www.cac.cornell.edu 11



e Cornell University

7 Center for Advanced Computing

Role of the Compiler

 OpenMP relies on the compiler to do the multithreading
— Compiler recognizes OpenMP directives, builds in appropriate code

« A special flag is generally required to enable OpenMP
— GNU: gcc —-fopenmp

— Intel: icc -openmp

6/11/2013 www.cac.cornell.edu 12



(L= 3 Cornell University

7 Center for Advanced Computing

OpenMP Compiler Directive Syntax

 OpenMP Directives: Sentinel, construct, and clauses

#pragma omp construct [clause [[,]Jclause]...] C

ISomp construct [clause [[,]Jclause]...] F90
« Example

#pragma omp parallel private(i) reduction(+:sum) C

ISomp parallel private(i) reduction(+:sum) F90

* Most OpenMP constructs apply to a “structured block”, that is, a
block of one or more statements with one point of entry at the top
and one point of exit at the bottom.

6/11/2013 www.cac.cornell.edu 13



g5y Cornell University
()

Center for Advanced Computing

OpenMP Constructs

OpenMP language

“extensions”
parallel Work- control of data synchron- runtime
control sharing one task access ization environment
* governs flow e distributes * assigns * specifies » coordinates * sets/gets environment
of control in work among work to a scoping of execution of
the program threads thread variables threads schedule
omp_set num threads()
do/for task shared critical omp get thread num()
parallel sections directive private atomic OMP_NUM THREADS
directive single (OpenMP 3.0) reduction barrier OMP_SCHEDULE
directives clauses directives clause, API, env. variables

6/11/2013

www.cac.cornell.edu

14



Cornell University

Center for Advanced Computing

OpenMP Parallel Construct

* Replicated
« Worksharing

PARALLEL
{code}
END PARALLEL

code code code code

' Replicated

6/11/2013

— executed by all threads
— divided among threads

PARALLEL DO
do I = 1,N*4
{code}
end do
END PARALLEL DO

l

I=1)N |=N+1,2N [=2N+1,3N [=3N+1,4N
cod code code code

Worksharing

www.cac.cornell.edu

PARALLEL
{codel}
DO
do I = 1,N*4
{code2}
end do
{code3}
END PARALLEL

\ 4

code1 code1 code1 code1

v \ 4 \ 4 A 4

I=1N  1=N+1,2N 1=2N+1,3N [=3N+1,4N

code2 code2 code?2 code2
Y A A \ 4
code3 code3 code3 code3
A 4 .
Combined

15



o7 Cornell University
@E) Center for Advanced Computing

OpenMP Worksharing, Mutual Exclusion

Use OpenMP directives to specify worksharing
in a parallel region, as well as mutual exclusion

#pragma omp parallel

( Code block Thread action

for Worksharing
#pragma omp sections Worksharing
single One thread

} // end parallel critical One thread at a time
parallel do/for Directives can be combined,
parallel sections If a parallel region has just

one worksharing construct.

6/11/2013 www.cac.cornell.edu 16



(EFTU‘ Cornell University

2J§ Center for Advanced Computing

Worksharing Loop: C/C++

General form:

1 |#pragma omp parallel for | #ipragma omp parallel

2 for (i=0; i<N; i++) {

3] { #pragma omp for

4 al[i] = b[i] + c[i]; for (i=0; i<N; i++)

S| } {a[i1] = b[i] + c[i];}
6 }

Line 1 Team of threads formed (parallel region).

Lines 2—6 Loop iterations are split among threads.
Implied barrier at end of block(s) {}.

Each loop iteration must be independent of other iterations.

6/11/2013 www.cac.cornell.edu 17



(EFTU‘ Cornell University

2J§ Center for Advanced Computing

Worksharing Loop: Fortran

General form:

1 !'Somp parallel do !Somp parallel

2| do i=1,N 1Somp do

3 a(i) = b(i) + c(i) do i=1,N

4 | enddo a(i) = b(i) + c(1i)
5 'Somp end parallel do enddo

6 ISomp end parallel
Line 1 Team of threads formed (parallel region).

Lines 2-5 Loop iterations are split among threads.

Line 5 (Optional) end of parallel loop (implied barrier at enddo).

Each loop iteration must be independent of other iterations.

6/11/2013 www.cac.cornell.edu 18



Ejﬂ Cornell University

2J§ Center for Advanced Computing

OpenMP Clauses

Directives dictate what the OpenMP thread team will do

Examples:

— Parallel regions are marked by the parallel directive

— Worksharing loops are marked by do, for directives (Fortran, C/C++)
Clauses control the behavior of any particular OpenMP directive
Examples:

1. Scoping of variables: private, shared, default
Initialization of variables: copyin, firstprivate
Scheduling: static, dynamic, guided
Conditional application: if
Number of threads in team: num threads

a s~ wb

6/11/2013 www.cac.cornell.edu 19



Ejﬂ Cornell University

2J§ Center for Advanced Computing

LAB: Worksharing Loop

Private, Shared Clauses

* Private : Variable is private to each thread
« Shared : Variable is shared among all threads

* In the following loop, each thread needs a private copy of temp

— The result would be unpredictable if temp were shared, because each
processor would be writing and reading to/from the same location

!Somp parallel do private(temp,i) shared(A,B,C)

do i=1,N

temp = A(i)/B(1)

C(i) = temp + cos(temp)
enddo

!Somp end parallel do

6/11/2013 www.cac.cornell.edu 20



so/v Cornell University
(&)

Center for Advanced Computing

WO r kS h ar| n g Res u |tS Work-Sharing on Production System
(Lab Example 2)
0.7
__06 Q
8 0.5 \
Speedup = 8 04 —
. . o 0.3 —

cputime(1) / cputime(N) £ 02 —O— 5

0 T

0 1 2 3 4 5 6 7 8 9
CPUs
If work is Complete|y Work-Sharing on Production System
. . . Lab Example 2

parallel, scaling is linear.

10

8
Scheduling, memory g
contention and overhead i I —
can impact speedup and 0 . . . .
Mflop/s rate. ° ? Lol °

6/11/2013 www.cac.cornell.edu 21



Cornell University

Center for Advanced Computing

Overhead to Fork a Thread Team

30000

25000

20000

15000

5000

Clock Periods (1.3GHz P690)

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

10000 A

5 10 15 20
Threads

—e— parallel
—=— parallel_do

* Increases roughly linearly with number of threads

6/11/2013

www.cac.cornell.edu

22



Cornell University
Center for Advanced Computing

Merging Parallel Regions

Merging work-sharing constructs eliminates the overhead

! SOMP

! SOMP
! SOMP

! SOMP

PARALLEL DO

do i=1,n
a(i)=b(i)+c (i)

enddo

END PARALLEL DO

PARALLEL DO 3

do i=1,m

x (i)=y (i) +z (i)
enddo
END PARALLEL DO

6/11/2013

1SOMP PARALLEL

1SOMP DO
do i=1,n
a(i)=b(i)+c (i)
enddo
1SOMP END DO
1SOMP DO
do i=1,m
x (1)=y(i)+z (i)
enddo

1SOMP END DO
1SOMP END PARALLEL

www.cac.cornell.edu

23



o7 Cornell University
@E) Center for Advanced Computing

LAB: OMP Functions

Runtime Library Functions

omp_get num_ threads () Number of threads in current team

omp get thread num() Thread ID, {0: N-1}

omp get max threads() Number of threads in environment,
OMP_NUM THREADS

omp _get num procs () Number of machine CPUs

omp in parallel(() True if in parallel region & multiple threads
executing

omp_set num threads(#) | Changes number of threads for parallel
region, if dynamic threading is enabled

6/11/2013 www.cac.cornell.edu 24



Ejﬂ Cornell University

2J§ Center for Advanced Computing

Environment Variables, More Functions

« To control the OpenMP runtime environment

OMP_NUM THREADS

Set to permitted number of threads: this is the
value returned by omp get max threads ()

OMP DYNAMIC

TRUE/FALSE for enable/disable dynamic
threading (can also use the function below)

« To enable dynamic thread count (not dynamic scheduling!)

omp set dynamic()

Set state of dynamic threading: if equal to “true”,
omp set num threads () controls thread count

omp get dynamic()

True if dynamic threading is on

6/11/2013

www.cac.cornell.edu

25



o7 Cornell University
@E) Center for Advanced Computing

Additional OpenMP Features

Schedule clause: specify how to divide work among threads
schedule (static) schedule (dynamic, M)

Reduction clause: perform collective operations on shared variables
reduction (+:asum) reduction (*:aprod)

Nowait clause: remove the barrier at the end of a parallel section
for ... nowait end do nowait

Lock routines: make mutual exclusion more lightweight and flexible
omp init lock (var) omp set lock(var)

6/11/2013 www.cac.cornell.edu 26



Cornell University
§ Center for Advanced Computing

Loop Nesting

time

: ' Nested Parallel Region Serial
execution ® SETEl J I

Master Thread

OpenMP 3.0 supports nested parallelism, older implementations
may ignore the nesting and serialize inner parallel regions.

A nested parallel region can specify any number of threads to be
used for the thread team, new id’s are assigned.

6/11/2013 www.cac.cornell.edu




o7 Cornell University
@E) Center for Advanced Computing

MIC Programming with OpenMP

* Intel compiler, icc, is needed

 OpenMP pragma is preceded by MIC-specific pragma
— Fortran: 'dir$ omp offload target(mic) <...>
- C: #pragma offload target (mic) <...>

« All data transfer is handled by the compiler
— User control provided through optional keywords

* 1/O can be done from within offloaded region

— Data can “stream” through the MIC; no need to leave MIC to fetch new
data

— Also very helpful when debugging (print statements)

» Specific subroutines are automatically offloaded, including MKL
subroutines

6/11/2013 www.cac.cornell.edu 28



Cornell University

Center for Advanced Computing

Example 1

2-D array (a) is filled with
data on the coprocessor

Data management done
automatically by compiler

« Memory is allocated
on coprocessor for (a)

* Private variables
(i,j,x) are created

* Result is copied back

6/11/2013

'dir$ omp offload target (mic) ! Offloading
!Somp parallel do shared(a,n), & ! Par. region
private(x, i, j), schedule (dynamic)
do j=1, n
do i=j, n
x = real(i + j); a(i,j) = x

#pragma offload target (mic)
#pragma omp parallel for shared(a), \
private (x), schedule (dynamic)
for (i=0;i<kn;i++) {
for(j=i;j<n;j++) {
x = (float) (i + j); alil[3] = x; }}

www.cac.cornell.edu 29



Cornell University

Center for Advanced Computing

Example 2

Hand-coded routine,

my sgemm:

» specifies explicit in
and out data
movement

Use attributes to
have routine compiled for
the coprocessor, or link
coprocessor-based MKL

6/11/2013

LAB: Hand-coding vs. MKL

'dir$ offload target(mic) in(a,b) out(d)
call my sgemm(d,a,b)

!dir$ attributes offload:mic ::
subroutine my sgemm(d,a,b)
real, dimension(:,:) :: a, b, d
1Somp parallel do
do j=1, n
do i=1l, n
d(i,j) = 0.0
do k=1, n
d(i,j) = d(i,j)+a(i, k)*b(k,3J)
enddo; enddo; endo
end subroutine

my sgemm

www.cac.cornell.edu 30



Cornell University

Center for Advanced Computing

Heterogeneous Threading, Sequential

#pragma omp parallel C/C++

Offloaded subroutine | {
S —— EE agma omp single
{| offload(); |

Generate
parallel region #pragma omp for

for (i=0; i<N; i++){...!
}

offload

single —
J C O idle
threads

!Somp parallel F90
!Somp single
call offload() ;
!Somp end single

workshare

!Somp do
on cpu do i=1,N;

. A end do
wait !Somp end parallel

6/11/2013 www.cac.cornell.edu 31



Cornell University

Center for Advanced Computing

Heterogeneous Threading, Concurrent

#pragma omp parallel C/C++
{
#pragma omp single nowait
{ offload(); }

Generate )
parallel region #ipragma omp for schedule (dynamic)

for (i=0; i<N; i++){...!
}

offload
single

nowait workshare

on cpu

!Somp parallel F90
!Somp single
call offload() ;
!Somp end single nowait
assist when
- - ' -
done in single .$Zr:>lpic_1: ;c.hedule(dynamlc)
. A end do
wait !Somp end parallel

6/11/2013 www.cac.cornell.edu 32



Cornell University

Center for Advanced Computing

Example 2 #pragma offload target (mic) //Offload region
#pragma omp parallel
. {
/O from offloaded region: M @E CSTils 0 Gans ERe T
» File is opened and { .
printf ("Opening file in offload region\n");
closed by one thread fl = fopen("/var/tmp/mydata/list.dat","r");
(omp single) }
« All threads take turns
. . #pragma omp for
reading from the file for (i=1;i<n;it++) {

(omp critical) #pragma omp critical
{ fscanf (fl,"%f",&a[i]) ;}

afi] = sqrt(a[i]);

Threads may also read in }
parallel (not shown) #pragma omp single
« Parallel file system {
e Threads read parts printf ("Closing file in offload region\n");
] fclose (f1);
from different targets }

}

6/11/2013 www.cac.cornell.edu 33



