Vectorization Lab
Parallel Computing on Stampede

Aaron Birkland
Cornell Center for Advanced Computing

Oct 30, 2013

This lab serves as an introduction to using a vectorizing compiler. We will work with
code containing a tight loop that should be easily vectorizable by the compiler. Our goal is
to try out various compiler options and compare vectorized with non-vectorized code.

1. Unpack the lab materials into your home directory, and change into the vector direc-
tory.

$ cd
$ tar xvf “tgdb9572/LABS/vector.tar
$ cd vector

2. We noted that the Intel compiler starts applying vectorization with -03. Let’s see if
we can view a vectorization report to see what it did.

$ icc simple.c -vec-report=2 -03 -o simple

simple.c(19): (col. 2) remark: LOOP WAS VECTORIZED.

simple.c(26): (col. 3) remark: LOOP WAS VECTORIZED.

simple.c(25): (col. 5) remark: loop was not vectorized: not inner loop.

This shows that two loops were vectorized: The initial value loading loop, and our
computation loop.

3. Now that the compiler has told us that it vectorized our loops, let’s verify this by
compiling with vectorization disabled.

$ icc simple.c -no-vec -vec-report=2 -03 -o simple_no_vec

Notice that all the vectorization reports disappeared, even though we specified report-
ing as a compile option. When vectorization is disabled, the reports disappear.

Cornell Center for Advanced Computing 1



4. As mentioned in the talk, the Intel compiler will use SSE (128-bit) instructions by
default. Compile the code with vectorization enabled, but add the argument -xAVX
to the compilation flags to use 256-bit AVX. Name your executable simple_avx.

5. Now compile vectorized and non-vectorized variants of the code to run natively on the
MIC coprocessor. Use the compile flag -mmic to compile for the MIC architecture.

$ icc simple.c -mmic -03 -o simple.mic
$ icc simple.c -no-vec -mmic -03 -o simple_no_vec.mic

6. The simple.sh batch file will record the execution time each of our vectorized and
non-vectorized applications. Take a look at the batch script, then run it and examine
the output.

$ sbatch simple.sh

$ cat slurm-951653.out
simple_no_vec: 0.67
simple 0.37
simple_avx 0.25
simple_no_vec.mic 13.22
simple.mic 2.78

7. Lastly, the intel compiler flag -xhost can be used to automatically detect all the
advanced features of the hardware (like AVX). The downside is that the resulting
binaries may only be run on machines with an architecture similar to Stampede (e.g.
the binaries would not be able to be run on Lonestar or Longhorn). Try compiling
with —xhost and see if the runtime is similar to the —axAVX example from before.

As we have seen, vectorization on the Intel compiler can be simple and straightforward.
Correlating vectorization reports with the source code can be a little bit tricky, especially
if the compiler implements optimizations such as loop reordering. However, as long as we
have some sense of what the compiler ought to be doing, this can usually be figured out
with a little effort.

Cornell Center for Advanced Computing 2



