
Ve
torization Lab

Parallel Computing on Stampede

Aaron Birkland

Cornell Center for Advan
ed Computing

O
t 30, 2013

This lab serves as an introdu
tion to using a ve
torizing 
ompiler. We will work with


ode 
ontaining a tight loop that should be easily ve
torizable by the 
ompiler. Our goal is

to try out various 
ompiler options and 
ompare ve
torized with non-ve
torized 
ode.

1. Unpa
k the lab materials into your home dire
tory, and 
hange into the ve
tor dire
-

tory.

$ 
d

$ tar xvf ~tg459572/LABS/ve
tor.tar

$ 
d ve
tor

2. We noted that the Intel 
ompiler starts applying ve
torization with -O3. Let's see if

we 
an view a ve
torization report to see what it did.

$ i

 simple.
 -ve
-report=2 -O3 -o simple

simple.
(19): (
ol. 2) remark: LOOP WAS VECTORIZED.

simple.
(26): (
ol. 3) remark: LOOP WAS VECTORIZED.

simple.
(25): (
ol. 5) remark: loop was not ve
torized: not inner loop.

This shows that two loops were ve
torized: The initial value loading loop, and our


omputation loop.

3. Now that the 
ompiler has told us that it ve
torized our loops, let's verify this by


ompiling with ve
torization disabled.

$ i

 simple.
 -no-ve
 -ve
-report=2 -O3 -o simple_no_ve


Noti
e that all the ve
torization reports disappeared, even though we spe
i�ed report-

ing as a 
ompile option. When ve
torization is disabled, the reports disappear.

Cornell Center for Advan
ed Computing 1



4. As mentioned in the talk, the Intel 
ompiler will use SSE (128-bit) instru
tions by

default. Compile the 
ode with ve
torization enabled, but add the argument -xAVX

to the 
ompilation 
ags to use 256-bit AVX. Name your exe
utable simple avx.

5. Now 
ompile ve
torized and non-ve
torized variants of the 
ode to run natively on the

MIC 
opro
essor. Use the 
ompile 
ag -mmi
 to 
ompile for the MIC ar
hite
ture.

$ i

 simple.
 -mmi
 -O3 -o simple.mi


$ i

 simple.
 -no-ve
 -mmi
 -O3 -o simple_no_ve
.mi


6. The simple.sh bat
h �le will re
ord the exe
ution time ea
h of our ve
torized and

non-ve
torized appli
ations. Take a look at the bat
h s
ript, then run it and examine

the output.

$ sbat
h simple.sh

$ 
at slurm-951653.out

simple_no_ve
: 0.67

simple 0.37

simple_avx 0.25

simple_no_ve
.mi
 13.22

simple.mi
 2.78

7. Lastly, the intel 
ompiler 
ag -xhost 
an be used to automati
ally dete
t all the

advan
ed features of the hardware (like AVX). The downside is that the resulting

binaries may only be run on ma
hines with an ar
hite
ture similar to Stampede (e.g.

the binaries would not be able to be run on Lonestar or Longhorn). Try 
ompiling

with -xhost and see if the runtime is similar to the -axAVX example from before.

As we have seen, ve
torization on the Intel 
ompiler 
an be simple and straightforward.

Correlating ve
torization reports with the sour
e 
ode 
an be a little bit tri
ky, espe
ially

if the 
ompiler implements optimizations su
h as loop reordering. However, as long as we

have some sense of what the 
ompiler ought to be doing, this 
an usually be �gured out

with a little e�ort.

Cornell Center for Advan
ed Computing 2


