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We demonstrate the use of a variational method to determine a quantitative lower bound on the rate of
convergence of Markov chain Monte Carlo !MCMC" algorithms as a function of the target density and
proposal density. The bound relies on approximating the second largest eigenvalue in the spectrum of the
MCMC operator using a variational principle and the approach is applicable to problems with continuous state
spaces. We apply the method to one dimensional examples with Gaussian and quartic target densities, and we
contrast the performance of the random walk Metropolis-Hastings algorithm with a “smart” variant that
incorporates gradient information into the trial moves, a generalization of the Metropolis adjusted Langevin
algorithm. We find that the variational method agrees quite closely with numerical simulations. We also see that
the smart MCMC algorithm often fails to converge geometrically in the tails of the target density except in the
simplest case we examine, and even then care must be taken to choose the appropriate scaling of the deter-
ministic and random parts of the proposed moves. Again, this calls into question the utility of smart MCMC in
more complex problems. Finally, we apply the same method to approximate the rate of convergence in
multidimensional Gaussian problems with and without importance sampling. There we demonstrate the neces-
sity of importance sampling for target densities which depend on variables with a wide range of scales.
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I. INTRODUCTION

Markov-chain Monte Carlo !MCMC" methods are impor-
tant tools in parametric modeling #1,2$ where the goal is to
determine a posterior distribution of parameters given a par-
ticular dataset. Since these algorithms tend to be computa-
tionally intensive, the challenge is to produce algorithms that
have better convergence rates and are therefore more effi-
cient #3,4$. Of particular concern are situations where there is
a large range of scales associated with the target density,
which we find are widespread in models from many different
fields #5–9$.

In this paper we quantify the convergence of the MCMC
method by the second largest eigenvalue in absolute value
for the associated operator in L2. This is not the only numeri-
cal quantity that can be used to describe the convergence
properties. Other authors quantify convergence with different
metrics: computing the constant of geometric convergence

with respect to the total variation norm #10$, monitoring
sample averages #11$, evaluating mixing of parallel chains
#12$, or looking at the integrated autocorrelation time of
functions of the sample #13,14$. The connection between the
second eigenvalue and total variation norm is discussed in
#15$. To connect the second eigenvalue estimates to metrics
based on autocorrelation, we would argue informally that the
second eigenvalue determines the autocorrelation time of the
slowest mixing function of the sample and as such represents
a “worst” case for the length of time you would need to run
the chain to reduce the variance of sample averages to a
predefined level.

There are a number of techniques to either determine ex-
actly or bound the second eigenvalue or the constant of geo-
metric convergence for MCMC algorithms on discrete state
spaces #16–19$, but the methods for finding quantitative
bounds for continuous state spaces require a more technical
formulation. Where work has been done in that area, upper
bounds on the convergence rate can be derived using purely
analytical #10,20,21$ or semianalytical techniques #22$, but
may not always be very useful for selecting parameters op-
timally. Therefore, in this work, we show that a conceptually
straightforward variational method can provide convergence
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rate estimates for continuous state space applications. In con-
trast to earlier closely related work #13,15$, we move away
from mathematical formalities, focussing from the start on
specific examples and step through the calculations that pro-
vide the second eigenvalue bounds. In Roberts and Rosenthal
#13$, rules of thumb are provided for determining the optimal
acceptance rate and step lengths for both the random walk
Metropolis-Hastings algorithm and the Metropolis adjusted
Langevin algorithm, in the asymptotic limit of infinite di-
mensions where it can be proved that those methods are ap-
proximated by diffusion processes. The rules are widely used
as they are independent of the specific form of the target
density, appear from numerical simulations to be appropriate
far from the infinite dimensional asymptotic limit, and are
easily implemented. In contrast, the approach proposed here
is to establish convergence properties for particular MCMC
algorithms based on their performance on simple target dis-
tributions without the need to set up a diffusion approxima-
tion in an infinite dimensional limit. Poor performance or
lack of convergence on these simple distributions then indi-
cates that further application with more complex target den-
sities will also suffer from convergence problems. Con-
versely, an identification of a range of parameters which
provide good convergence properties for simple target distri-
butions may be used as a starting point for further applica-
tions. Even though we provide only lower bounds on the
second eigenvalue we show these bounds can be remarkably
tight due to careful choice of test functions, and computing
the approximate convergence rate as a function of algorithm
parameters allows us to optimally tune those parameters.

We have been able to obtain explicit formulas for one
dimensional example problems but the method may be more
generally applicable, when applied in an approximate way, as
we demonstrate for a multidimensional problem.

II. MARKOV-CHAIN MONTE CARLO

Typically, one wishes to obtain a sample x1 ,x2. . . from a
probability distribution !!x" which is sometimes called the
target distribution. An MCMC algorithm works by creating a
Markov chain that has !!x" as its unique stationary distribu-
tion, i.e., after many steps of the chain any initial distribution
converges to !!x". A sufficient condition to establish !!x" as
the stationary distribution is that the chain be ergodic and
that the transition density, t!x ,y", of the chain satisfy a de-
tailed balance:

!!x"t!x,y" = !!y"t!y,x" .

Given a proposal density q!x ,y" for generating moves, one
way to construct the required transition density #23–25$ is to
define t!x ,y"="!x ,y"q!x ,y" where

"!x,y" = min%q!y,x"!!y"
q!x,y"!!x"

,1& !1"

is the acceptance probability of the step x→y. Obtaining the
sample from the stationary distribution then involves letting
the chain run past the transient !burn-in" time and recording
iterates from the late time trajectory at time intervals exceed-

ing the correlation time. How long it takes to reach the sta-
tionary distribution determines the efficiency of the algo-
rithm and for a given target distribution, clearly it depends
on the choice of the proposal density. We can write down the
one-step evolution of a probability density p!x" as a linear
operator:

!Lp"!y" =' t!x,y"p!x"dx + %1 −' t!y,x"dx&p!y"

=' #t!x,y"p!x" − t!y,x"p!y"$dx + p!y" ,

where dx=dx1¯dxn, dy=dy1¯dyn, n is the dimension of
the state space, and all integrals are from −# to # here and
elsewhere in this paper. The second form makes it explicit
that p!y"=!!y" is the stationary distribution by the detailed
balance relation.

Now, if the linear operator has a discrete set of eigenfunc-
tions and eigenvalues, it holds that the asymptotic conver-
gence rate is determined by the second largest eigenvalue in
absolute value !the largest being 1" #26,27$. We will write
this eigenvalue as $*, and will refer to it as the second ei-
genvalue meaning the second largest in absolute value. Geo-
metric convergence of the chain is ensured when $*%1 #15$,
and then the discrepancy between the density at the mth it-
erate of the chain and the target density decreases as !$*"m

for large m. Many previous authors have taken this second
eigenvalue approach, in both the finite and continuous state
space settings #17–19,22,28$, as it provides a useful quanti-
fier for the convergence rate. Ideally we would like algorithm
parameters to be adjusted such that $* is as as small as
possible.

The variational calculation allows us to obtain an estimate
for $*, but before we can do this we need to convert our
operator into a self-adjoint form which ensures that the
eigenfunctions are orthogonal. This is easily accomplished
by a standard technique #16$ of modifying the transition den-
sity by s!x ,y"= t!x ,y"(!!x" /(!!y" and our self-adjoint op-
erator is then given by

!Sp"!y" =' s!x,y"p!x"dx + %1 −' t!y,x"dx&p!y" !2"

=' #s!x,y"p!x" − t!y,x"p!y"$dx + p!y" , !3"

where the “diagonal” part of the old operator #multiplying
p!y"$ need not be transformed using s!x ,y". It is easy to
show that defined as above, S is self-adjoint using the stan-
dard inner product in L2 with respect to Lebesgue measure.
Note that if u!x" is an eigenfunction of the operator S, then
(!!x"u!x" is an eigenfunction of the original operator L with
the same eigenvalue.

A. Metropolis-Hastings and smart Monte Carlo

We consider two MCMC algorithms which essentially
differ only in the choice of proposal density and acceptance
probability that is used in selecting steps. We will refer to the
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random walk Metropolis-Hastings !RWMH" algorithm as
that which uses a symmetric proposal density to determine
the next move; for example, a Gaussian centered at the cur-
rent point: q!x ,y"=()L) / !2!"exp#−!y−x"TL!y−x" /2$ where
L is an inverse covariance matrix that needs to be chosen
appropriately for the given problem !importance sampling".
In other words, the proposed move from x to y is given by
y=x+R where R*N!0,L−1" is a normal random variable,
the mean is 0, and the covariance is L−1. Thus the update on
the current state has no deterministic component. We will see
that when the target density is not spherically symmetric, a
naive implementation of the Metropolis-Hastings algorithm
where the step scales are all chosen to be equal leads to very
poor performance of the algorithm. As would be expected
the convergence deteriorates as a function of the ratio of the
true scales of the target density to the scale chosen for the
proposal density.

One variant used to accelerate the standard algorithm is a
smart Monte Carlo !SMC" method #29$ that uses the gradient
of the negative of the log target density at every step, G!x"
=−! ln#!!x"$, to give

q!x,y" =
()L)
(2!

exp%−
1
2

+y − #x − H−1G!x"$,T

&L+y − #x − H−1G!x"$,& !4"

and H can be considered either as a constant scaling of the
gradient part of the step or, if it is the Hessian of −ln#!!x"$,
as producing a Newton-like optimization step #30$. The
move to y is generated as y=x−H−1G!x"+R, so now we have
a random component R*N!0,L−1" and a deterministic com-
ponent −H−1G!x". Viewed like this, moves can be considered
to be steps in an optimization algorithm !moving to maxi-
mize the probability of the target density" with random noise
added. We will see that with an optimal choice of H and for
Gaussian target densities, the smart Monte Carlo method can
converge in one step to the stationary distribution. We will
also see that for a one dimensional non-Gaussian distribution
it actually fails to converge, independent of the values of the
scaling parameters.

B. Variational method

Once we have the self-adjoint operator for the chain S
from Eq. !3", and we know the eigenfunction with eigen-
value $1=1, (!!x", we can look for a candidate second
eigenfunction in the function space orthogonal to the first
eigenfunction where the inner product is defined by !p1 , p2"
=-p1!x"p2!x"dx. Given a family of normalized candidate
functions in this space, va!x", with variational parameter a,
the variational principle #26,31$ states

maxa)!va,Sva") ' $* ' 1 !5"

and depending on how accurately our family of candidate
functions captures the true second eigenfunction, this can
give quite a close approximation to the second dominant
eigenvalue. In the problems we examine in the following
sections the target densities have an even symmetry which

makes it straightforward to select a variational trial function:
any function with odd symmetry will naturally lie in the
orthogonal space. For more complicated problems with
known symmetries this general principle may be useful in
selecting variational families for the purposes of algorithm
comparison. Another approach to constructing the variational
family is shown in the section on multidimensional target
densities: choose the test function as a linear combination of
two functions, one with the properties that are required !i.e.,
slow convergence to the target distribution" and then the ad-
ditional term is used merely to preserve orthogonality.

This variational method for providing a lower bound to
the second eigenvalue of the MCMC algorithm was fore-
shadowed by a similar approach of Lawler and Sokal #26$.
These authors considered the flow of probability out of a
subset A of the state space; in our language, their test func-
tions were confined to the family vA!x"= #!!Ac"(A
−!!A"(Ac$ / #!!A"!!Ac"$, where (A is the indicator function
on the set A. By allowing for more general test functions, we
establish not only rigorous but also relatively tight bounds on
convergence rates, providing guidance for parameter optimi-
zation and algorithm comparisons.

Writing out explicitly for S in !va ,Sva" we have

!va,Sva" =' ' va!x"s!x,y"va!y"dxdy −' ' t!y,x"

&#va!y"$2dxdy + 1. !6"

As we will see in the following section, the lower bound in
Eq. !5" can be arbitrarily close to 1 and therefore equality
holds. In these situations we can also show that the chain
does not converge geometrically, based on the total variation
norm definition of geometric convergence #10$. However,
whether the type of convergence changes or not, we still
refer to the magnitude of the second eigenvalue estimate in
determining efficiency of the algorithm. The rationale is that
the second eigenvalue determines the longest possible auto-
correlation time of a function of the MCMC sample; the
worst case autocorrelation time will be of the order
1.0 / ln!$*" which could be extremely long. We will also see
that there can be eigenvalues in the spectrum that are close to
−1 which determine the asymptotic convergence rate, i.e.,
$*= )$n) where $n%0. Interestingly, for this situation there is
oscillatory behavior of the Markov chain.

III. EXAMPLES

A. Gaussian target density

Consider the simplest case of a one dimensional Gaussian
target density !!x"=(k / !2!" exp!−kx2 /2" with variance 1 /k.
Under the RWMH algorithm, the proposal density is

q!x,y" =( l

2!
exp%−

1
2

l!y − x"2& . !7"

The issue is to determine l optimally; a first guess would be
that l=k is the best choice. The rationale behind this is that
since the target and proposal densities have the same form, if
they also have the same scales, then the convergence rate
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might be expected to be optimal. We will see that this is not
actually correct.

To begin, define a variational function va!x"
)x exp!−ax2 /2", orthogonal to the target density and nor-
malized such that -va

2dx=1. We can motivate this choice by
recognizing that any initial distribution that is asymmetric
will most likely have a component of this test function, and a
convergence rate estimate based on it roughly corresponds to
how fast probability “equilibrates” between the tails. More
commonly, variational calculations will use linear combina-
tions of many basis functions with the coefficients as varia-
tional parameters. We find here that including higher order
terms in the test function is unnecessary as we obtain tight
enough bounds just retaining the lowest order term.

We proceed by evaluating Eq. !6" noting that because of
the form of the acceptance probability, Eq. !1", there are two
functional forms for the kernels t!x ,y" and s!x ,y" depending
on the sign of y2−x2, i.e., whether the “energy” change,
*E!x ,y"=−ln#!!y"$+ln#!!x"$=k!y2−x2" /2, is positive or
negative. It is then convenient to use the coordinate transfor-
mation y=rx, x=x or x=ry, y=y where −1'r'1 and −#
'x, y'# to evaluate the integrals. An explicit expression
for !va ,Sva" can be obtained for this case of a Gaussian
target density.

Next, we use a numerical optimization method to maxi-
mize the bound defined by Eq. !5" with respect to a. The
result of this analysis is shown in Fig. 1 along with an em-
pirically determined convergence rate for comparison. !To
obtain the rate empirically, we run the MCMC algorithm for
many iterates on a random initial distribution and observe the
pointwise differences from the distribution of the mth iterate
and the target distribution for large m. These differences are
either fit using Hermite polynomial functions or by looking
for the multiplicative factor which describes the geometric
decay of the mth difference from one iterate to the next." The

variational bound tightly matches the empirical obtained ei-
genvalue estimates in this case, and an optimum step size l
can be ascertained. Clearly our l=1 initial guess for the best
scaling is far from optimal.

It is also worth comparing the optimal step scale with
those obtained from different methods. In #13,14$, a deriva-
tion of the optimal step size and acceptance rate is proposed
based on minimizing the integrated autocorrelation time of
an arbitrary function of the chain’s states in stationarity. By
approximating the chain as an infinite dimensional diffusion
process, formulas are derived for the optimal scaling of
steps. For our one dimensional Gaussian target density, the
proposal density’s optimal variance is suggested to be
!1 /2.38"2=0.176 which is surprisingly close to the estimate
we have obtained using the variational method from Fig. 1,
l.0.165. However, given the infinite dimensional limit in
which the former approximation is made, and the different
convergence criterion based on autocorrelation time rather
than second eigenvalue, the agreement may be merely coin-
cidental.

Moving to the one dimensional smart Monte Carlo, we
have a Gaussian proposal density of the form

q!x,y" =( l

2!
exp/−

1
2

l0y − %x −
k

h
x&122 , !8"

where 1 / l is the variance of the random part of the step and
1 /h is the scale of the deterministic part. #Letting h→# we
recover the RWMH algorithm of Eq. !7".$

Taking h=k corresponds to performing a Newton step at
every iterate of the algorithm. Thus, since the log of the
target density is purely quadratic, the current point will al-
ways be returned to the extremum at 0 by the deterministic
component of the smart Monte Carlo step and the random
component will give a combined move drawn from q!x ,y"
=q!y"=(l / !2!" exp!−ly2 /2", which has the form of an inde-
pendence sampler #23$. If we then also choose l=k, we see
immediately that we are generating moves from the target
distribution from the beginning, i.e., we have convergence in
one step starting from any initial distribution.

In real problems, however, −ln#!!x"$ will not be qua-
dratic. We may obtain an estimate for l and h by considering
its quadratic approximation or curvature but in many cases
those estimates will have to be adjusted. If the curvature is
very small !or in multidimensional problems if the quadratic
approximations are close to singular", the parameters will
have to be increased to provide a step size control to prevent
wildly unconstrained moves !analogous to the application of
a trust region in optimization methods #30$". If the curvature
is large but we believe that the target density is multimodal,
we need to decrease the parameters to allow larger steps to
escape the local extrema. Therefore we examine in the fol-
lowing the dependence of the convergence rate as we vary
both of the parameters l and h.

The acceptance probability Eq. !1" has two functional
forms separated by a boundary in the !x ,y" plane given by

0k + l
k

h
%− 2+

k

h
&1!y2 − x2" = b!k,h,l"!y2 − x2" = 0. !9"

In particular, the acceptance probability is

FIG. 1. Variational estimate on the second eigenvalue for the
one dimensional Gaussian problem using the RWMH method, with
k=1.0. The variational estimate is the solid line and the empirically
determined values are marked with stars. Some of the empirical
values seem to be less than the lower bound, but this is due to
inaccuracies in their estimation. The optimum occurs at l.0.165.
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"!x,y" = min0exp%−
1
2

b!k,h,l"!y2 − x2"&,11 . !10"

Now we have a complication over the RWMH method be-
cause depending on the sign of the coefficient function
b!k ,h , l" in Eq. !9", we find that either "!x ,y"%1 on )y)
+ )x), "!x ,y"=1 on )y)% )x) or vice versa. This is shown in
Fig. 2.

As before, for a given value of h and l, we need to break
up the double integrals of the scalar product !va ,Sva", Eq.
!6", into the appropriate regions. Our choice of variational
function is the same as before !since the target density is the
same" and we again can get an explicit !but complicated"
expression for Eq. !6" which we maximize with respect to a.
The results of this analysis are shown in Fig. 3!a", where we
fix k=1.0 and vary h, l. We have confirmed that these lower
bounds are quite accurate as shown in Fig. 3!b".

The remarkable feature of these results is that even for
this simple Gaussian problem, the selection of step scale pa-
rameters h, l is critical to achieve convergence. As already
mentioned, there is a trivial choice of optimum with h= l
=k=1 that gives one step convergence from any initial dis-

tribution !and therefore $*=0". However, if we change pa-
rameters infinitesimally such that l=1+,, h=1 !,-0" we go
through a discontinuous transition where we see no conver-
gence from any initial distribution. This can be understood
by recognizing that after one step we will have a proposal
density !before accept or reject" ) exp#−!1+,"x2 /2$ which
has a factor exp!−,x2 /2" less probability in its tails than the
target density. Suppose there is an initial distribution or point
mass concentrated at x=(2M /(,, M .1. The proposed step
of the smart Monte Carlo algorithm, starting at x, will revisit
x too infrequently by a factor exp!−M". Thus detailed bal-
ance will force the transition x→0 to be accepted with a
probability of only exp!−M", and thus the initial distribution
will take an arbitrarily long time to converge to the target
density.

More formally, we can compute the probability of rejec-
tion, r!x"=1−-t!x ,y"dy, when h, l are as above and we find

(a) (b) (c)

FIG. 2. Regions in the xy plane where acceptance probability "!x ,y"%1 or "!x ,y"=1, when !a" b!1,h , l"+0 and !b" b!1,h , l"%0. The
equation for the boundary is shown in !c"; see Eq. !9" with k=1.0. #The RWMH algorithm will only have regions described by !a".$

(a) (b)

FIG. 3. Estimate of second eigenvalue for the symmetrized smart Monte Carlo operator. !a" k=1 is fixed and h, l are allowed to vary.
h=1.0, l=1.0 is the optimal scaling for deterministic and random parts of the step. The solid diagonal line is the parameter restrictions that
yield the Metropolis adjusted Langevin algorithm !MALA" algorithm !see text". !b" We take a slice through this surface at l=1.5 and
empirically determine the second eigenvalue at points along this curve !stars". The error bars are too small to be seen. Dashed lines are
discontinuities.
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r!x" = /%(1 + ,

2
x& − exp%1

2
b!k,h,l"x2&

&
1 + ,

1 + , + b!k,h,l"
/%1 + b!k,h,l" + ,

2
x& ,

where b!k ,h , l"%0 and / is the cumulative normal !0, 1"
distribution function. We note that ess sup r!x"=1 by conti-
nuity of r!x", and then we use Proposition 5.1 from #32$ to
conclude that the Markov chain is no longer geometrically
convergent for these values of h and l.

In fact this is only one of the two disconnected regions
where no convergence is observed in Fig. 3. The largest of
the two !with h-1 /2" is defined exactly by the equation
b!1,h , l"%0 #compare Fig. 2!c" with Fig. 3!a"$. In this re-
gion the bound on the second eigenvalue approaches 1 as the
variational parameter, a→0. This corresponds to a perturba-
tion on the target density of x(!!x" for the unsymmetrized
MCMC operator L. In other words, we have a test distribu-
tion that has exponentially more probability in its tails than
the target density. For initial states x arbitrarily far away
from the origin, the acceptance probability "!x ,y" in the re-
gion )y)% )x) is arbitrarily small. To see this, note that Eq.
!10" is an exponentially decaying function of y2−x2 in this
region, and given the form of the proposal density Eq. !8",
we see that the expected value of y2−x2 is arbitrarily large
and negative. Thus states far out will never be “allowed
back” and the fat tails of (!!x" will never shrink back down
those of !!x". Furthermore, moves x→y where )y)+ )x) are
always accepted #because "!x ,y"=1 on )y)- )x)$ which si-
multaneously prevents convergence. The situation is analo-
gous to that described for l=1+, and h=k=1, except now
there is a cutoff both on the deterministic step and the ran-
dom step. A typical example of this is shown in Fig. 4. Once
we cross to the b!1,h , l"+0 region, moves x→y where )y)
% )x) are always accepted by Eq. !10" #Fig. 2!a"$. Therefore

excess probability in the tails is allowed to flow back into the
central part of the distribution and the convergence is not
blocked.

In the second region where no convergence is observed
!h%1 /2 in Fig. 3", we have a situation where the determin-
istic step alone !taking l→#" leads to the proposed moves
being generated by an unstable mapping, from the !n−1"th
to nth iterate: x!n"=x!n−1"−0x!n−1" where 0-2. The trial
variational function for this situation also maximizes the
bound as a→0, again implying that the tails are not decaying
to the stationary distribution. The reason is that, even when
l%#, we have a situation in which the expected or mean
position of a state x after one step is y where )y)+ )x). Thus
excessive probability in the tails cannot be shifted inward to
match the target density.

The lack of convergence in this region was already noted
for the Metropolis adjusted Langevin algorithm !MALA", a
special case of the SMC algorithm where h=2l. As shown in
#33$, if ! is bounded, a sufficient condition for MALA to fail
to be geometrically ergodic is

lim inf
)x)→#

)!ln !!x")
)x)

-
4
s

,

where s is the single stepsize control parameter for that al-
gorithm. The equivalence to the SMC method is established
by setting l=1 /s. Thus, for the Gaussian target density !, the
condition is l%1 /4. Referring to the solid white line in Fig.
3!a", the nonconvergent parameter regime for MALA lies
along the line segment h=2l with l%1 /4 which matches
exactly with the boundary we have determined using the
variational method.

The h=1 /2 “trough” is a special case where we have
oscillatory behavior. That is, the second eigenvalue is nega-
tive but greater than −1 and in fact convergence does occur.
Interestingly setting h=k /2 means that b!k ,h , l"=k and the
acceptance probability of Eq. !10" looks again like that of the
RWMH algorithm, but the convergence is actually faster. In
a sense, given that the deterministic part of the step moves
x→−x and the target distribution is symmetric, the oscilla-
tory behavior allows the chain to sample the distribution
twice as fast.

B. Quartic target density

In scientific or statistical applications where MCMC is
used, the log of the target density will ordinarily have higher
order terms beyond the quadratic order we studied in the
previous section. For example, in a Bayesian inference prob-
lem the posterior distribution will rarely have a simple
Gaussian form. Both finding the maximum a posteriori pa-
rameter estimates and sampling from the posterior are made
more difficult in the presence of these higher order terms.

Therefore we wish to extend the previous example by
studying a target distribution of the form !!x"
= #2!3/4"k!1/4" /1!1 /4"$exp!−kx4 /2". Here, the log of the target
density is quartic and the proposal density !Gaussian" no
longer has the same form as the target density. We would like
to understand the performance of the Monte Carlo algo-
rithms in this circumstance. #The test distribution is taken to

FIG. 4. Forty iterates of the smart Monte Carlo algorithm !solid
lines", Eq. !8", when the initial distribution is normal with standard
deviation five times the Gaussian target density !dashed line". Pa-
rameters are chosen to be in the region of no convergence !h=2.0,
l=1.5"; see Fig. 3!a". We see that the tails of the initial distribution
are essentially unchanging after many iterates and have failed to
converge to the target density
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be )x exp!−ax4 /2", i.e., in the orthogonal space to the sta-
tionary distribution.$

The goal is to estimate the optimal value of l, as before.
We can argue approximately that the step scale should be
such that kx4 /2.1 for a typical move x, i.e., the change in
energy is about 1 and the acceptance probability is therefore
exp!−1". This gives a typical value for x2=(2 /(k. Since the
proposal density is Gaussian with variance 1 / l, we therefore
would naively predict l=(k /(2. Applying the variational
method, we were unable to find a closed form solution to Eq.
!6" so we had to resort to numerical integrals in determining
the bound in Eq. !5". The results are shown in Fig. 5 for the
RWMH method; it suggests an optimal choice for the step
size parameter l, which is an improvement over our initial
guess of 1 /(2.0.71 !when k=1". Using the formulas for the
optimal step scale from #13$ coincidentally yields about 0.71,
also a little off from our variational estimate.

Turning to the smart Monte Carlo algorithm, if we wish to
make the deterministic part of the proposed move a Newton
step using the Hessian of −ln#!!x"$ at x=0 we are left with a
singular Hessian and an infinite deterministic step, reinforc-
ing the need for the step length control parameter, h.

Surprisingly, we find that, independent of the value of h
and l !k fixed at 1", the scalar product !va ,Sva"→1 as a
→0. Thus there are no choices of scaling parameters which
will lead to convergence. This is borne out by numerical
simulation; see Fig. 6 for the changes in an initial density
under many iterates of the algorithm with an arbitrary choice
for s, h.

The failure of the smart Monte Carlo method for the quar-
tic problem is clearly due to nonconvergence of the tails of
the distribution, and can be seen by analyzing the integrals
defining the operator, Eq. !6", and noting that they all tend to
zero as the variational parameter tends to zero, independent
of the choice for k, h, and l.

As a partial check on this result, we again apply the con-
dition derived in #33$ for the MALA algorithm, which states
that geometric convergence is not possible when lim
inf)x)→#)! ln !!x") / )x)-4 /s where s is the step scale param-
eter. Now, for the quartic density !, the quantity on the left
of the inequality→#, so no value of s can give geometric
convergence. MALA is a special case of the SMC algorithm,
but we have shown here that the latter also has convergence
problems indicated by $*→1, for all values of its scaling
parameters, h and l.

The Gaussian and quartic problems are representative ex-
amples of target densities on which we have tested the smart
Monte Carlo method. As we have seen there are severe con-
vergence problems on these distributions. We would expect
that for real applications, where the log of the target density
would contain components of these and higher order nonlin-
earities, similar convergence difficulties for the smart Monte
Carlo method would occur. It may well be that in applica-
tions where the method is extensively used !e.g., #34–36$"
the convergence criteria are less precise than ours. For ex-
ample, it may be acceptable to merely monitor the variance
of some function of the state space variables and conclude
that convergence has been achieved when it ceases to change
appreciably, or as in #13$, define efficiency by the integrated
autocorrelation time.

IV. MULTIDIMENSIONAL TARGET DENSITIES

For multidimensional problems, it is quite common to
find a large range of scales associated with the target density

FIG. 5. Second eigenvalue estimate from the variational method
!solid line" and empirical estimates !stars", for the quartic target
density !k=1" using the RWMH method, Eq. !7". The numerical
values for $* are now estimated by taking the ratio of the discrep-
ancy from the target density in subsequent iterates and finding a
single multiplicative factor which describes the decay. This is done
rather than using functional forms analogous to Hermite polynomi-
als to fit the decay, because it appears that there may be more
significant contributions from higher order terms. This also explains
why the lower bound shown differs more than in Figs. 1 and 3!b".
The data point shown at l=1 /(2.0.71 !see text" does not appear to
be optimal.

FIG. 6. Forty iterates of the smart Monte Carlo algorithm !solid
lines", Eq. !8", when the target density is quartic !dashed line". The
initial distribution of points is normal with standard deviation about
five times that of target density !dashed line". Parameters are arbi-
trarily chosen as !h=1.0, l=1.0", and we see that the tails of the
initial distribution are unchanged for every iterate of the algorithm.
Other parameter sets tested lead to the same behavior.
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#5,9,8$. That is, the curvature of the probability density along
some directions in the parameter space is much larger than in
other directions. Clearly, if an MCMC method is not de-
signed to take these different scales into account through
importance sampling, the algorithm will perform very
poorly. If the curvature is very high in a particular direction
and we try to take a moderately sized step, it will almost
certainly be rejected but if we take small steps in directions
that are essentially flat the MCMC algorithm will be very
slow to equilibrate. We would like to show explicitly here
what happens to the convergence rate when the scale of the
problem has been underestimated or overestimated.

The variational calculations for the one dimensional ex-
amples of the previous section either yielded explicit formu-
las or gave integrals that were relatively fast to compute
numerically. However, as we go to multiple dimensions nei-
ther of these features are present, in general. Typically the
integrals describing !va ,Sva" will not factor into one dimen-
sional integrals. For Gaussian target densities the full space
is broken into regions analogous to those in Fig. 2, described
by an equation like ytAy+xtAx where A is a symmetric n by
n matrix which is not necessarily positive definite. For the
RWMH algorithm applied to a multivariate Gaussian target
density with inverse covariance matrix K, we have A=K, and
therefore all the dimensions are coupled through the energy
change, *E=ytKy−xtKx. We would still like to be able to get
a lower bound on $*, and to this end note that any test
function orthogonal to the target density will work in Eq. !5";
the bound does not explicitly require a variational parameter,
however without it the estimate will be less accurate. It is
still necessary to make choices for the test functions that are
both tractable in computing !v ,Sv" and are “difficult” func-
tions for the given algorithm to converge from, i.e., have a
significant component along the true second eigenfunction.

As an example, take the multivariate Gaussian distribu-
tion of the form

!!x" =
()K)

!2!"n/2 exp%−
1
2

xtKx& !11"

with x= !x1 , . . . ,xn", and consider using the MH algorithm
with importance sampling, i.e.,

q!x,y" =
()L)

!2!"n/2 exp%−
1
2

!y − x"tL!y − x"& ,

where again L is the inverse covariance matrix or step size
control term and to simplify we assume that both K and L are
diagonal. Without any analysis we might guess that the op-
timum choice for L is K.

First we construct a test function that will provide a useful
bound when the proposed steps are too large for the natural
scale of the problem. For simplicity, consider putting a delta
function distribution at the origin. If we take large steps the
acceptance probability should be low and there will be a
large overlap between the initial state and the final state. In
the limit that the proposed steps have infinite length, the
initial state will not be changed at all and the bound on the
second eigenvalue in absolute value will approach 1. To do
this more carefully we define a test function which is a

Gaussian whose variance will ultimately be taken to zero to
represent the delta function. However, we also need to add
another term to ensure the test function is orthogonal to the
target density, in order to apply the variational bound. There-
fore for the unsymmetric operator we write the test function
as u2!x"=−A!!x"+Bw2!x" where w2!x" is the probability
density for a multivariate Gaussian with covariance matrix
22I and A and B are constants. For the symmetrized operator
the trial function is transformed to v2!x"=−A(!!x"
+Bw2!x" /(!!x". A and B are constrained to satisfy the or-
thogonality relation !v2 ,!"=0 and a normalization !v2 ,v2"
=1. These lead to the conditions

A = B and B2' % w2!x"
(!!x"

&2

dx = 1 + B2.

Then it can be seen that

!v2,Sv2" = − B2 + B2%S w2!x"
(!!x"

,
w2!x"
(!!x"& ,

where we have used the orthogonality condition, the fact that
w2!x" integrates to 1 and that S is self-adjoint. Writing out
the operator S explicitly we get

%S w2!x"
(!!x"

,
w2!x"
(!!x"& =' ' w2!x"

(!!x"
s!x,y"

w2!y"
(!!y"

dxdy

−' ' t!x,y"% w2!x"
(!!x"

&2

dxdy

+' % w2!x"
(!!x"

&2

dx .

The last term on the right hand side is !1+B2" /B2, making
use of the normalization condition, so we are left with

!v2,Sv2" = B2' ' w2!x"
(!!x"

s!x,y"
w2!y"
(!!y"

dxdy − B2' ' t!x,y"

&% w2!x"
(!!x"

&2

dxdy + 1.

Since we are ultimately taking a limit as 2→0 !w2→a delta
function" we can make approximations to these integrals as
follows:

' ' w2!x"
(!!x"

s!x,y"
w2!y"
(!!y"

dxdy

. s!0,0" ' ' w2!x"
(!!x"

w2!y"
(!!y"

dxdy

and

' ' t!x,y"% w2!x"
(!!x"

&2

dxdy .' t!0,y"dy' % w2!x"
(!!x"

&2

dx .

Finally by taking 2→0 we have the expression
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!Sv0,v0" = 1 −' t!0,y"dy .

As already mentioned, for the multidimensional problem we
expect different functional forms for the kernels s!x ,y" and
t!x ,y" depending on the initial and final state !x ,y" and this is
what makes decoupling the integrals difficult. However, for
this choice of test function the equation for the boundary
!with x=0" is given by ytKy=0 and since K is positive
semidefinite we always stay on one side of the boundary !the
energy never decreases from the initial distribution placed at
x=0". Then

!Sv0,v0" = 1 −
()L)

!2!"n/2 ' exp%−
1
2

yt!K + L"y&dy !12"

=1 − 3
i=1

n ( li

li + ki
, !13"

where li and ki are the diagonal elements of the diagonal
matrices L and K, respectively. With no importance sampling
we would have L=kI where k would be chosen to make
sufficiently large steps to enable it to sample !!x". A rough
argument as follows can give some insight into the form of
Eq. !13": 1 /(li is a measure of the scale in the ith coordinate
direction of the proposal density, 1 /(ki is the scale in the ith
coordinate direction of the target density. Suppose that li
3ki for each i, that is the scales of the proposal density are
too large in all directions. Then the ratio of the mean volume
of moves generated by q!0,y" to the volume occupied by
!!y" is exactly 3i=1

n (li /(ki. Intuitively, this ratio is propor-
tional to the acceptance probability, and in the regime li
3ki the acceptance probability determines the convergence
properties.

We want to use Eq. !13" to show how choosing step sizes
too large even in one direction will result in a very inefficient
algorithm. Suppose that for all but one of the directions we
make li=ki, i=1, . . . ,n−1 which would be roughly the cor-
rect scaling in those directions. Then the bound on the sec-
ond eigenvalue is

!Sv0,v0" = 1 −(%1
2
&n−1( 1

1 + kn/ln
. !14"

From this we can see that as we go to larger and larger step
sizes relative to the scale in the last direction !kn / ln→#", the
bound on $* increases to 1. Conversely we can argue that if
one of the directions of the target density has a scale that is
considerably smaller than the step scales being used in the
proposal density, we will get very few acceptances and the
convergence rate will be close to 0. Hence we see explicitly
the need for importance sampling to accelerate convergence.

We would also like to address what happens in the other
limit as the step size becomes excessively small compared to
the natural scale of the problem. #In fact, Eq. !13" gives a
lower bound of zero in that case which is not surprising as it
is based essentially on the term in the operator equation
which gives the probability of staying at the current state. If
we take infinitesimally small steps, the acceptance probabil-

ity will be one and we will never stay at the current state.$
When the step scales are infinitesimally small we expect in-
tuitively that the bound on the second eigenvalue will also
approach 1; even though the acceptance ratio is close to 1,
very small steps will never be able to “explore” the target
distribution sufficiently. To compute this limit, we propose a
test function which has components of the target density in
all directions except the last, where it has an antisymmetric
form to make sure it is orthogonal to the target density. With
respect to the symmetrized operator S this means

v!x" ) xn3
i=1

n

(!i!xi" . !15"

Here (!i!xi" is the one dimensional Gaussian density which
is the ith factor in a diagonalized multivariate Gaussian den-
sity. #Recall that since !!x" is an eigenfunction of L, then
(!!x" is an eigenfunction of S.$ We still have the problem of
decoupling the n-dimensional multivariate problem into n
one dimensional problems. To manage this we use a device
to re-express the operator equation, Eq. !6", explicitly in
terms of the change 1

2 !ytKy−xtKx". #i.e., −ln !!y"
!!x" $, which we

denote by *E. That is

!v,Sv" =' ' v!x"s!x,y"v!y"dxdy −' ' t!x,y"#v!x"$2dxdy

+ 1 =' ' xn!!x"q!x,y"0' min!e−*E,1"

&4%*E −
1
24

i=1

n

ki!yi
2 − xi

2"&d*E1dxdy

−' ' xn
2!!x"q!x,y"0' min!e−*E,1"

&4%*E −
1
24

i=1

n

ki!yi
2 − xi

2"&d*E1dxdy .

Then we use the integral representation of the delta function
4!x"= 1

2! - exp!−iwx"dw, factor q!x ,y"=3i=1
n qi!xi ,yi", and re-

arrange the order of integration to give

!v,Sv" =
1

2!
' min„exp!− *E",1…

&%' A!w"exp!− iw*E"dw&d*E , !16"

where A!w" contains the integration over the now decoupled
!x ,y" coordinates:
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A!w" = %3
i=1

n−1 ' ' !i!xi"qi!xi,yi"exp%1
2

iwki!yi
2 − xi

2"&dxidyi&
!17"

&' ' !xnyn − xn
2"!n!xn"qn!xn,yn"

&exp%1
2

iwki!yn
2 − xn

2"&dxndyn !18"

=3
i=1

n−1
1

#1 + !ki/li"w!− i + w"$1/2
i!kn/ln"w

01 +
kn

ln
w!− i + w"13/2 .

!19"

Note that the complex integral with respect to dw has a
branch point at the roots of #1+

kn

ln
w!−i+w"$3/2 which lie on

the imaginary axis at r1 and r2. It simplifies the analysis to
consider the situation ki= li for i=1, . . . , !n−1" and assume
that n−1 is even. This way, the roots of #1
+w!−i+w"$!n−1/2", r1,0 and r2,0, are !n−1" /2 order poles and
not branch points, also on the imaginary axis. If we now also
assume that kn%sn, then we can take a contour as shown in
Fig. 7 when *E%0 and a similar one in the lower imaginary
plane when *E-0. Thus Eq. !19" is reduced to a residue
term and a real integral which needs to be evaluated numeri-
cally. The result is plotted for n=11 in Fig. 8 along with the
bound that came from Eq. !14". Thus we see the trade off
between taking large steps that potentially can explore the
space quickly but have a higher chance of being rejected and
taking small steps which will have a high acceptance prob-
ability but will be unable to sample the space quickly. As we
saw when doing the full variational calculation for the one
dimensional problems, the best step scale to use is not what
we may have guessed; the natural choice ln=kn=1 here does
not appear to minimize the second eigenvalue. We believe
this kind of “approximate” variational approach may be a
useful way to deal with problems which are difficult to ana-
lyze otherwise.

V. CONCLUSION

By applying a variational method, it is possible to obtain
an accurate !lower bound" estimate for the second eigenvalue

of an MCMC operator and thus bound the asymptotic con-
vergence rate of the chain to the target distribution. Given
such an estimate we can optimally tune the parameters in the
proposal distribution to improve the performance of the al-
gorithm. The procedure has a role to play between the vari-
ous numerical algorithms that perform convergence diagnos-
tics before the full simulations are run, to allow the user to
manually tune parameters, and the adaptive schemes #3,37$
that require no preliminary exploration. The simulations we
performed to confirm our variational bounds in the case of a
one dimensional target density and varying one step scale
parameter, Figs. 1 and 3!b", would be infeasible to do as we
move to higher dimensions and as we vary additional algo-
rithm parameters. It is in those situations that the variational
method can more efficiently identify regions of optimality.

In addition, the variational method allows us to discover
weaknesses in variants of the random walk Metropolis-
Hastings algorithm which on the surface appear to be reason-
able prescriptions for sampling the target density. This is
most dramatically seen in the smart Monte Carlo method
discussed above which apparently has serious flaws for even
the simplest of one dimensional target densities. Although
the smart MC method has been widely used in molecular
dynamics applications #34–36$ the scales are often chosen by
physical considerations !for example, to not exceed signifi-
cantly the step sizes needed to accurately describe the dy-
namical evolution of the system" and furthermore, the diag-
nostics of convergence are not as rigorous as ours; typically
a physical quantity is monitored until it appears to reach an
equilibrium value, the rare events which correspond to the
tails of the target distribution are possibly of lesser impor-
tance in those studies. Therefore the convergence problems
we have discussed here specifically in relation to the smart
Monte Carlo method, to our knowledge, have not been pre-
viously examined. Presumably the convergence problems
can be corrected by a more careful discretization of the un-
derlying diffusion equations, as was shown for the related
Langevin-type methods #38$.

FIG. 7. Contour used to evaluate Eq. !19" when *E%0. r1 is a
branch point and r1,0 is a pole of order !n−1" /2. The contour is the
same for *E%0 except restricted to the negative imaginary plane.

FIG. 8. Lower bound on second eigenvalue for the multivariate
Gaussian problem, Eq. !11", with n=11. Step scale=(1 / ln. kn=1
sets the scale of the target density in the last direction. The test
function is chosen as the negative of the target density perturbed by
a delta function !solid line" or as the target density itself in all
directions but the last !dashed line". The estimate for the lower
bound is a maximum of the two curves.
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The smart Monte Carlo and related Langevin-type meth-
ods use local information of the target density to try and
improve the efficiency in making Monte Carlo moves. It
would be interesting to examine convergence issues for the
more broadly used gradient based hybrid MC algorithms
#39$ and other nonadaptive accelerated methods !e.g., paral-
lel tempering #40$" where the alternative techniques for de-
termining convergence via diffusion approximations may be
harder to apply. Other MCMC methods, such as biased Me-
tropolis algorithms !BMAs", attempt to capture an approxi-
mation of the entire target distribution for use in the pro-
posed moves, by discretizing the target’s cumulative
distribution function !CDF" !#41,42$". These approaches are
not suitable for large-dimensional state spaces where the tar-
get distribution varies rapidly in a complex landscape and is
not separable !as in Monte Carlo simulations of large clusters
of atoms". In low-dimensional applications where BMA is
applicable, it can guarantee high acceptance rates and quick
convergence in bounded state space applications. However,
care would have to be taken in discretizing the target CDF
when the state space is unbounded, since the BMA method is
an independence sampler !the proposed state is independent
of the current state". We saw that in the regime where the

smart Monte is also an independence sampler !h=1", the
value of the remaining free parameter is critical in ensuring
convergence of the tails. For a wrong parameter choice, the
ratio of probabilities in the tails of the proposal and the target
becomes exponentially small the further we move out and
therefore steps will be accepted from those states only at an
exponentially small rate. For BMA, the appropriate discreti-
zation of the CDF could in fact be determined using the
variational method presented here to ensure an analogous
situation does not arise.

More generally, the variational analysis could be a useful
tool in making comparisons between the convergence prop-
erties of the latest MCMC algorithms without extensive nu-
merical simulation.
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