
Acentral component of the emerging
field of systems biology is the modeling
and simulation of complex biomolecu-
lar networks, which describe the dy-

namics of regulatory, signaling, metabolic, and
developmental processes in living organisms. (Fig-
ure 1 shows a small but representative example of
such a network, describing signaling by G protein-
coupled receptors.1 Other networks under investi-
gation by our group appear online at www.lassp.
cornell.edu/sethna/GeneDynamics/.) Naturally,
tools for inferring networks from experimental
data, simulating network behavior, estimating
model parameters, and quantifying model uncer-
tainties are all necessary to this endeavor.

Our research into complex biomolecular net-
works has revealed an additional intriguing prop-
erty—namely, their sloppiness. These networks are
vastly more sensitive to changes along some direc-
tions in parameter space than along others.2–5 Al-
though many groups have built tools for simulating
biomolecular networks (www.sbml.org), none sup-

port the types of analyses that we need to unravel
this sloppiness phenomenon. Therefore, we’ve im-
plemented our own software system—called
SloppyCell—to support our research (http://sloppy
cell.sourceforge.net).

Much of systems biology is concerned with un-
derstanding the dynamics of complex biological
networks and in predicting how experimental
interventions (such as gene knockouts or drug ther-
apies) can change that behavior. SloppyCell aug-
ments standard dynamical modeling by focusing on
inference of model parameters from data and quan-
tification of the uncertainties of model predictions
in the face of model sloppiness, to ascertain whether
such predictions are indeed testable.

The Python Connection
SloppyCell is an open source software system writ-
ten in Python to provide support for model con-
struction, simulation, fitting, and validation. One
important role of Python is to glue together many
diverse modules that provide specific functional-
ity. We use NumPy (www.scipy.org/NumPy) and
SciPy (www.scipy.org) for numerics—particularly,
for integrating differential equations, optimizing
parameters by least squares fits to data, and ana-
lyzing the Hessian matrix about a best-fit set of pa-
rameters. We use matplotlib for plotting (http://
matplotlib.sourceforge.net). A Python interface to
the libSBML library (http://sbml.org/software/libs

34 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

Python Unleashed on Systems Biology

Researchers at Cornell University have built an open source software system to model
biomolecular reaction networks. SloppyCell is written in Python and uses third-party
libraries extensively, but it also does some fun things with on-the-fly code generation and
parallel programming.

CHRISTOPHER R. MYERS, RYAN N. GUTENKUNST,
AND JAMES P. SETHNA

Cornell University

1521-9615/07/$25.00 © 2007 IEEE
Copublished by the IEEE CS and the AIP

P Y T H O N :
B A T T E R I E S I N C L U D E D

MAY/JUNE 2007 35

bml/) lets us read and write models in a standard-
ized, XML-based file format, the Systems Biology
Markup Language (SBML),6 and we use the py-
par wrapper (http://datamining.anu.edu.au/~ole/
pypar/) to the message-passing interface (MPI)
library to coordinate parallel programs on distrib-
uted memory clusters. We can generate descrip-
tions of reaction networks in the dot graph
specification language for visualization via
Graphviz (www.graphviz.org). Finally, we use the
smtplib module to have simulation runs send
email with information on their status (for those
dedicated researchers who can’t bear to be apart
from their work for too long).

Although Python serves admirably as the glue,
we focus here on a few of its powerful features—
the ones that let us construct highly dynamic and
flexible simulation tools.

Code Synthesis
and Symbolic Manipulation
Researchers typically treat the dynamics of reac-
tion networks as either continuous and de-
terministic (modeling the time evolution of
molecular concentrations) or as discrete and sto-
chastic (by simulating many individual chemical
reactions via Monte Carlo). In the former case,
we construct systems of ordinary differential
equations (ODEs) from the underlying network
topology and the kinetic forms of the associated
chemical reactions. In practice, these ODEs are
often derived by hand, but they need not be: all
the information required for their synthesis is
embedded in a suitably defined network, but the
structure of any particular model is known only
at runtime once we create and specify an instance
of a Network class.

With Python, we use symbolic expressions (en-
coded as strings) to specify the kinetics of different
reaction types and then loop over all the reactions
defined in a given network to construct a symbolic
expression for the ODEs that describe the time
evolution of all chemical species. (We depict the re-
actions as arrows in Figure 1; we can query each re-
action to identify those chemicals involved in that
reaction [represented as shapes], as well as an ex-
pression for the instantaneous rate of the reaction
based on model parameters and the relevant chem-
ical concentrations.) This symbolic expression is
formatted in such a way that we can define a new
method, get_ddv_dt(y, t), which is dynamically
attached to an instance of the Network class using
the Python exec statement. (The term “dv” in the
method name is shorthand for “dynamical vari-
ables”—that is, those chemical species whose time

evolution we’re solving for.) We then use this dy-
namically generated method in conjunction with
ODE integrators (such as scipy.integrate.
odeint, which is a wrapper around the venerable
LSODA integrator,7,8 or with the variant LSODAR,9
which we’ve wrapped up in SloppyCell to integrate
ODEs with defined events). We refer to this
process of generating the set of ODEs for a model
directly from the network topology as “compiling”
the network.

This sort of technique helps us do more than just
synthesize ODEs for the model itself. Similar tech-
niques let us construct sensitivity equations for a
given model, so that we can understand how model
trajectories vary with model parameters. To ac-
complish this, we developed a small package that
supports the differentiation of symbolic Python
math expressions with respect to specified variables,

R

! "#

! "#

! "#

"#

"#

!

GDP

GDP

GDP

GDP

GDP

GTP

GTP

GTP

!

R
R

GTP
!

Figure 1. Model for receptor-driven activation of heterotrimeric G
proteins.1 The ! signaling protein is inactive when bound to
guanosine diphosphate (GDP) and active when bound to
guanosine triphosphate (GTP). After forming a complex with a "#
protein, binding to the active receptor R allows the ! protein to
release its GDP and bind GTP. The complex then dissociates into R,
"#, and activated !. The activated ! protein goes on to signal
downstream targets, whereas the "# protein is free to bring new
inactive ! to the receptor.

36 COMPUTING IN SCIENCE & ENGINEERING

by converting mathematical expressions to abstract
syntax trees (ASTs) via the Python compiler mod-
ule. This lets us generate another new method,
get_d2dv_dovdt(y, t), which describes the de-
rivatives of the dynamical variables with respect to
both time and optimizable variables (model para-
meters whose values we’re interested in fitting to
data). By computing parametric derivatives analyt-
ically rather than via finite differences, we can bet-
ter navigate the ill-conditioned terrain of the
sloppy models of interest to us.

The ASTs we use to represent the detailed math-
ematical form of biological networks have other
benefits as well. We also use them to generate
LaTeX representations of the relevant systems of
equations—in practice, this not only saves us from
error-prone typing, but it’s also useful for debug-
ging a particular model’s implementation.

Colleagues of ours who are developing
PyDSTool (http://pydstool.sourceforge.net)—a
Python-based package for simulating and analyz-
ing dynamical systems—have taken this type of ap-
proach to code synthesis for differential equations
a step further. The approach we described earlier
involves generating Python-encoded right-hand
sides to differential equations, which we use in con-
junction with compiled and wrapped integrators.
For additional performance, PyDSTool supports
the generation of C-encoded right-hand sides,
which it can then use to dynamically compile and
link with various integrators using the Python
distutils module.

Parallel Programming in SloppyCell
Because of the sloppy structure of complex bio-
molecular networks, it’s important not to just sim-
ulate a model for one set of parameters but to do so
over large families of parameter sets consistent with
available experimental data. Accordingly, we use
Monte Carlo sampling to simulate a model with
many different parameter sets and thus estimate the
model uncertainties (error bars) associated with
predictions. Parallel computing on distributed
memory clusters efficiently enables these sorts of
extensive parameter explorations. Moreover, sev-
eral different Python packages provide interfaces
to MPI libraries, and we’ve found pypar to be es-
pecially useful in this regard.

Whereas message passing on distributed mem-
ory machines is inherently somewhat cumbersome
and low level, pypar raises the bar by exploiting
built-in Python support for the pickling of complex
objects. Message passing in a low-level program-
ming language such as Fortran or C typically re-
quires constructing appropriately sized memory

buffers into which we must pack complex data
structures, but pypar uses Python’s ability to seri-
alize (or pickle) an arbitrary object into a Python
string, which can then be passed from one proces-
sor to another and unpickled on the other side.
With this, we can pass lists of parameters, model
trajectories returned by integrators, and so on; we
can also send Python exception objects raised by
worker nodes back to the master node for further
processing. (These can arise, for example, if the
ODE integrator fails to converge for a particular
set of parameters.)

Additionally, Python’s built-in eval statement
makes it easy to create a very flexible worker that
can execute arbitrary expressions passed as strings
by the master (requiring only that the inputs and
return value are pickle-able). The following code
snippet demonstrates a basic error-tolerant
master–worker parallel computing environment
for arbitrarily complex functions and arguments
defined in some hypothetical module named
our_science:

import pypar

our_science contains the functions

we want to execute

import our_science

if pypar.rank() != 0:

The workers execute this loop.

(The master has rank == 0.)

while True:

Wait for a message from

the master.

msg = pypar.receive(source=0)

Exit python if sent a

SystemExit exception

if isinstance(msg, SystemExit):

sys.exit()

Evaluate the message and

send the result back to

the master.

If an exception was raised,

send that instead.

command, msg_locals = msg

locals().update(msg_locals)

try:

result = eval(command)

except X:

result = X

pypar.send(result, 0)

The code below is only run by

MAY/JUNE 2007 37

the master.

Evaluate our_science.foo(bar) on each

worker, getting values for bar from

our_science.todo.

command = ‘our_science.foo(bar)’

for worker in range(1, pypar.size()):

args = {‘bar’: \

our_science.todo[worker]}

pypar.send((command, args), worker)

Collect results from all workers.

results = [pypar.receive(worker) \

for worker in \

range(1, pypar.size())]

Check if any of the workers failed.

If so, raise the resulting Exception.

for r in results:

if isinstance(r, Exception):

raise r

Shut down all the workers.

for worker in range(1, pypar.size()):

pypar.send(SystemExit(), worker)

We’ve very briefly described a few
of the fun and flexible features
that Python provides to support
the construction of expressive

computational problem-solving environments, such
as those needed to tackle complex problems in sys-
tems biology. Although any programming language
can be coaxed into doing what’s desired with suffi-
cient hard work, Python encourages researchers to
ask questions that they might not have even con-
sidered in less expressive environments.

Acknowledgments
We thank Fergal Casey, Joshua Waterfall, Robert
Kuczenski, and Jordan Atlas for their help in developing
and testing SloppyCell, and we acknowledge the insights
of Kevin Brown and Colin Hill in developing predecessor
codes, which have helped motivate our work.
Development of SloppyCell has been supported by NSF
grant DMR-0218475, USDA-ARS project 1907-21000-
017-05, and an NIH Molecular Biophysics Training grant
to Gutenkunst (no. T32-GM-08267).

References
1. V.Y. Arshavsky, T.D. Lamb, and E.N. Pugh, “G Proteins and Pho-

totransduction,” Ann. Rev. Physiology, vol. 64, no. 1, 2002, pp.
153–187.

2. K.S. Brown and J.P. Sethna, “Statistical Mechanical Approaches
to Models with Many Poorly Known Parameters,” Physical Rev.
E, vol. 68, no. 2, 2003, p. 021904; http://link.aps.org/abstract/
PRE/v68/e021904.

3. K.S. Brown et al., “The Statistical Mechanics of Complex Signal-
ing Networks: Nerve Growth Factor Signaling,” Physical Biology,
vol. 1, no. 3, 2004, pp. 184–195; http://stacks.iop.org/1478-
3975/1/184.

4. J.J. Waterfall et al., “Sloppy-Model Universality Class and the Van-
dermonde Matrix,” Physical Rev. Letters, vol. 97, no. 15, 2006,
pp. 150601–150604; http://link.aps.org/abstract/PRL/v97/
e150601.

5. R.N. Gutenkunst et al., “Universally Sloppy Parameter Sensitivi-
ties in Systems Biology,” 2007; http://arxiv.org/q-bio.QM/
0701039.

6. M. Hucka et al., “The Systems Biology Markup Language (SBML):
A Medium for Representation and Exchange of Biochemical Net-
work Models,” Bioinformatics, vol. 19, no. 4, 2003, pp. 524–531;
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/
19/4/524.

7. A.C. Hindmarsh, “Lsode and Lsodi, Two New Initial Value Ordi-
nary Differential Equation Solvers,” ACM-SIGNUM Newsletter, vol.
15, no. 4, 1980, pp. 10–11.

8. L.R. Petzold, “Automatic Selection of Methods for Solving Stiff
and Nonstiff Systems of Ordinary Differential Equations,” SIAM
J. of Scientific and Statistical Computing, vol. 4, no. 1, 1983, pp.
137–148.

9. A.C. Hindmarsh, “Odepack, A Systematized Collection of ODE
Solvers,” Scientific Computing, North-Holland, 1983, pp. 55–64.

Christopher R. Myers is a senior research associate and
associate director in the Cornell Theory Center at Cornell
University. His research interests lie at the intersection of
physics, biology, and computer science, with particular
emphases on biological information processing, robust-
ness and evolvability of natural and artificial networks,
and the design and development of software systems to
probe complex spatiotemporal phenomena. Myers has a
PhD in physics from Cornell. Contact him at myers@
tc.cornell.edu; www.tc.cornell.edu/~myers.

Ryan N. Gutenkunst is a graduate student in the Labo-
ratory of Atomic and Solid State Physics at Cornell Uni-
versity. He uses SloppyCell to study universal properties of
complex biological networks, and is interested in how
these properties affect both practical model development
and the dynamics of evolution. Gutenkunst has a BS in
physics from the California Institute of Technology. Con-
tact him rng7@cornell.edu; http://pages.physics.cornell.
edu/~rgutenkunst/.

James P. Sethna is a professor of physics at Cornell Uni-
versity, and is a member of the Laboratory of Atomic and
Solid State Physics. His recent research interests include
common, universal features found in nonlinear optimiza-
tion problems with many parameters, such as sloppy
models arising in the study of biological signal transduc-
tion. Sethna has a PhD in physics from Princeton Univer-
sity. Contact him at sethna@lassp.cornell.edu; www.
lassp.cornell.edu/sethna.

