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Abstract: Biological information processing as implemented by regulatory and signalling networks in living cells
requires sufficient specificity of molecular interaction to distinguish signals from one another, but much of
regulation and signalling involves somewhat fuzzy and promiscuous recognition of molecular sequences and
structures, which can leave systems vulnerable to crosstalk. A simple model of biomolecular interactions that
reveals both a sharp onset of crosstalk and a fragmentation of the neutral network of viable solutions is
examined as more proteins compete for regions of sequence space, revealing intrinsic limits to reliable
signalling in the face of promiscuity. These results suggest connections to both phase transitions in constraint
satisfaction problems and coding theory bounds on the size of communication codes.

1 Introduction
The functioning of complex biochemical pathways hinges on
conveying molecular signals reliably in the stochastic and
evolving milieu of living cells. These signals are mediated
by molecular interactions that distinguish physiological
binding partners from myriad other cellular constituents:
this ability to distinguish functional signals from molecular
noise is ultimately the source of information processing
in cellular networks. But molecular recognition is subtle:
many of the molecular interactions involved in cellular
regulatory and signalling pathways do not involve highly
specific ‘lock and key’ binding, but instead are characterised
by more fuzzy and promiscuous recognition of families of
sequences and configurations [1–3]. Furthermore, there are
often paralogous copies of molecules within a cell that
interact with similar and potentially overlapping sets of
substrates. This fuzzy recognition reflects a tradeoff
between specificity and robustness, allowing systems to be
more robust to genetic mutations [4]. But while interaction
promiscuity may provide robustness against mutations, as
well as opportunities for different modes of regulatory
control, it introduces fragilities elsewhere, leaving systems
more vulnerable to potentially disadvantageous crosstalk
among reactants. Therefore a basic question concerning
cellular signalling in crowded sequence spaces, where
multiple proteins bind to similar families of molecular

sequences and structures is: under what circumstances can
crosstalk be avoided in such a system? This paper
investigates a simple null model, associated with random
molecular sequences, that is amenable to analysis and
suggests connections to recent work on phase transitions in
combinatorial NP-complete problems. While not directly
applicable to the evolved molecular sequences found in
nature, this model serves as a useful first step in defining
the landscape of constraint satisfaction in cellular signalling.

The theory of communication in noisy channels, dating
back to the seminal work of Shannon [5, 6], also provides a
useful framework in which to interpret cellular signals.
Engineered error-correcting codes embed messages in
higher-dimensional spaces (e.g. via encoded checks on the
message integrity), to insulate each possible codeword
within a sphere in the embedding space. By packing such
spheres so that they are disjoint, any corrupted word in a
message can (up to some defined number of errors) be
uniquely associated with an original code word. In
molecular signalling, sequence recognition volumes play a
similar role: these volumes describe the sets of sequences
recognised (i.e. bound with significant probability) by
different molecules. In molecular signalling, however,
overlapping recognition of sequences precludes the sort of
disjoint sphere packings found in engineered codes. Instead
of asking, therefore, whether all messages can be
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communicated through a molecular interaction channel, we
focus here instead on whether any message can be so
conveyed (under the assumption that evolutionary selection
might find such a solution if it does in principle exist).
A central result presented here, which establishes limits
on the number of proteins that can compete for
regions in sequence space before crosstalk becomes likely, is
akin to a bound on the size of a code in a communication
system.

This problem – molecular discrimination in the face of
potential crosstalk – arises in a variety of contexts. A
classic problem in immunology is the ability of antibodies
to discriminate between ‘self ’ and ‘nonself’ antigens, with
much work focused on identifying how large a recognition
region needs to be in order to reliably perform this
discrimination [7, 8]. In gene regulation, transcription
factors (TFs) that control gene expression by binding to
DNA are organised in families that often recognize similar
sorts of sequences. Recent work in that area has explored
tradeoffs between binding TF specificity and system
robustness [4], balances between selection and mutation of
TFs [9], evolutionary divergence of competing TF-binding
sequence pairs to avoid crosstalk [10] and the application
of ideas from coding theory to understand limits on the
size of TF families [11]. Signal transduction is mediated
largely by protein–protein interactions. In bacteria, this
involves two-component systems with sensor kinases
that activate response regulators, and active research is
focused on how specificity is maintained among sensor–
regulator pairs and to what extent there is crosstalk
and cross-regulation within larger sets [12–15]. In
eukaryotes, signalling often involves modular protein
domains (e.g. SH2, SH3, WW) that recognise
characteristic peptide motifs in partners [16]. There can be
tens or even hundreds of proteins within a paralogous
family in a given organism that must discriminate among
sets of potential interaction partners, and inferring such
interactions and their specificity as a basis for developing
predictive models of signalling pathways is a crucial task in
systems biology.

The problem of molecular discrimination provides the
broad backdrop for this work, but the role of sequence
niches in particular was crystallised in a set of elegant
experiments on SH3-mediated signalling in yeast
(Saccharomyces cerevisiae), by Zarrinpar et al. [17]. SH3
domains are known to bind to a set of proline-rich peptide
sequences (the so-called ‘PXXP’ motif ) [2, 18]. Zarrinpar
et al. probed the yeast high-osmolarity signalling pathway,
which involves the interaction of Sho1 (a protein with an
SH3 domain) and Pbs2 (containing a PXXP motif). By
making chimeric versions of Sho1 containing different SH3
domains, they demonstrated that no native yeast SH3
domains other than that in Sho1 were capable of
interacting with Pbs2, but that half of the metazoan SH3
domains they tested were able to do so. They surmised that
there has been an evolutionary selection against crosstalk

with that pathway in yeast, with protein sequences having
co-evolved such that the Pbs2 ligand lies in a niche in
sequence space where it is recognised by only the Sho1
SH3 domain. Since there has been no such selection
pressure to avoid crosstalk in other organisms, the Pbs2
motif bound to non-native SH3 domains with greater
probability. (See supplementary text and Fig. S.1 for
further discussion.) It is the structure of these sorts of
sequence niches that form the core of this paper.

2 Results
2.1 Sequence niche question
We begin by distilling the central question to be considered
here: under what conditions does a unique sequence niche
exist so that signalling without crosstalk might be possible?
To address this question, a highly abstracted model of
molecular interaction is adopted, in which sequences are
represented by binary strings of length L, as opposed to the
4-letter nucleotide alphabet relevant for protein–DNA
interactions or the 20-letter amino acid alphabet for
protein–protein binding. (Binary sequence models, such as
the HP model, have been used in the study of protein
folding [19], although it remains an open question as to
whether there is an appropriate coarse-grained alphabet
capable of capturing the essential biochemistry of protein–
protein interactions involved in signalling [20].) In this
model, binding of a sequence to a protein is achieved if the
sequence is sufficiently close to the optimal sequence
recognised by the protein, with Hamming distance used as
a measure of closeness: two sequences bind if they differ in
at most R positions, given some promiscuity radius R.
Given this representation, this paper can pose the sequence
niche question (SNQ), phrased and typeset in the canonical
style of Garey and Johnson [21] and illustrated schematically
in Fig. 1:

Sequence niche
Instance: Binary sequence T of length L, a set of binary
crosstalk sequences Ci , for i ¼ 1, . . . , N , each of length L
and an integer R, 0 " R " L.

Question: Is there a binary sequence s of length L such that
H (T , s) " R and H (Ci, s) . R for i ¼ 1, . . . , N , where
H (x, y) is the Hamming distance between sequences x and y?

SNQ is an example of the distinguishing string selection
problem (DSSP), as defined by Lanctot et al. [22]. (The
DSSP allows for Sc strings to be within Hamming distance
kc, and Sf strings to be at least Hamming distance kf apart.)
The DSSP was proven to be NP-complete [22]; the SNQ
is the DSSP with Sc ¼ 1 and R ¼ kc ¼ kf # 1, but the
computational complexity of the DSSP does not depend on
the values of these parameters, so the SNQ is also NP-
complete. The SNQ is similar in spirit to the well-known
computer science problem SAT (and its specialisation
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K-SAT), in that these problems ask whether there exists a
solution that satisfies a set of (potentially conflicting)
constraints [21]. Borrowing from the language of SAT, we
say a particular instance of the SNQ is ‘satisfiable’ when a
solution s exists, and ‘unsatisfiable’ otherwise. The SNQ
asks whether discrimination of one target protein from a
background of crosstalking proteins is possible. A
symmetric generalisation of this problem would ascertain
whether every protein in a collection is distinguishable, that
is, whether there is a separate sequence niche for each of
the N proteins; a problem of this sort was investigated
previously by Sear [23, 24]. The generalised SNQ is
presumably in the same complexity class as the single-
target SNQ, since deciding it simply involves deciding N
separate SNQs.

2.2 Satisfiability of random sequence
niches
The NP-completeness of the SNQ is a statement about its
worst-case complexity, but there has been increasing
interest in recent years in quantifying the typical-case
complexity of NP-hard problems. A common strategy is to
examine ensembles of random instances of such problems,
investigating how solution complexity depends upon
parameters that characterise those random instances. A
similar strategy is adopted here.

Multiple random instances of the SNQ were examined
(with uniform equal probability of 0s and 1s in the
sequence strings), for various values of the problem
parameters L, R and N. A recursive algorithm proposed by
Gramm et al. [25] was used to determine whether a given
instance had a solution; see supplementary text for further

details. Fig. 2a shows the average unsatisfiable fraction of
random SNQ instances as a function of the number of
crosstalking proteins N, averaged over an ensemble of 100
random instances for each N. Data are shown here only for
R ¼ 2 and R ¼ 8; for intermediate values of R, the
satisfiability data interpolate between these extremes. In
addition, Fig. 2b shows the median solution time t
required for determining whether or not an instance is
satisfiable. Similar to as is done for K-SAT, solution times
are measured in units of the number of recursive calls to
the solution algorithm [25]. (Since the distribution of
solution times over random instances often show heavy tails
[26], the median solution time is a better estimate of
typical complexity than is the mean.) Fig. 2a demonstrates
a transition from satisfiability (SAT) to unsatisfiability
(UNSAT) as the number of crosstalking proteins is
increased. Rather than a gradual diminution in the capacity
for reliable signalling, the SNQ exhibits a relatively abrupt
switch as log N increases. Fig. 2b reveals, for the same set
of parameter values, that the solution time of the
algorithm peaks near the point of the SAT-UNSAT
transition, that is, it becomes significantly more difficult to
decide if a given instance is satisfiable when that instance
lies near the transition. The characteristic scales of the
random SNQ are seen to vary over orders of magnitude.
For the solution times, this is perhaps not surprising: since
the SNQ is NP-complete, we expect the worst-case run
time of the solution algorithm to be exponential in the size
of the problem.

Figure 2 Satisfiability and solution time data
a Average fraction of unsatisfiable instances of the random SNQ
as a function of L, R and N [(L, R) specified in figure legend,
N varying along x-axis]
b Median solution time t of the SNQ decision (number of
recursive calls in the solution algorithm) for the same instances
depicted in a
Averages in a and medians in b are for 100 instances of the SNQ
for each (L, R, N ) set

Figure 1 Sequence niche question: given a target protein
sequence T and a set of N crosstalking protein sequences
fCg, is there a sequence s that is bound by T but not by
any of the proteins Ci
In this model, sequences are binary strings of length L, and two
sequences bind if the Hamming distance between them is less
than or equal to R
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2.3 Scaling of the SNQ transition:
a satisfiability bound on the number of
crosstalking proteins
We can develop a simple scaling theory to describe the
transition from satisfiability to unsatisfiability as we vary
parameters L and R. A given instance is unsatisfiable if the
target volume (i.e. the Hamming sphere of radius R
surrounding the target sequence T ) is completely covered
by the union of the crosstalk volumes (centred about the
crosstalk sequences fCg), a process illustrated schematically
in Fig. 3a. We can estimate the critical number of crosstalk
proteins Nc needed to cover the sequence volume of the
target protein. The full derivation (along with extensions) is
provided in the supplementary text, but essentially the
bound stems from estimating the average number of
sequences in the Hamming sphere of volume V (L, R)
centered about the target T remaining uncovered after N
crosstalk proteins have been deposited at random in a
sequence space of volume V0(L), which is modelled as a
binomial process. When there are O(1) sequences left
uncovered, it is expected that the target volume to be
covered with probability 1/2, such that V (1# V =
V0)

Nc ¼ 1, implying:

Nc ¼
log (1=V )

log (1# V =V0)
(1)

where V0(L) ¼ 2L is the total number of possible binary
sequences of length L, and V (L, R) ¼

PR
n¼0

L
n

! "
is the

number of binary sequences in a ball of Hamming radius R
about a given sequence. As discussed in more detail below,
this can be interpreted as a random satisfiability bound on
the approximate number of randomly distributed proteins
that can coexist without crosstalk.

With this critical protein number Nc, the raw satisfiability
and solution time data of Fig. 2 can be rescaled. These
rescaled data are shown in Fig. 3, where we show results

for R ¼ 2, 3, 4, 6, 8 (not just R ¼ 2 and 8 as plotted
previously). In Figs. 3b and 3c the protein number (x-axis)
is scaled as N ! (N # Nc)=Nc, and in Fig. 3c, the solution
time data ( y-axis) are scaled by the exponentially growing
number of sequences in the search tree V (L, R) that in
principle need to be considered. The collapse of each set of
unscaled data onto a reasonably compact scaling form
suggests this simple description is approximately correct,
although there is clearly some systematic variation with
Hamming radius R. The scaling collapses for the solution
time data are more variable than for the satisfiability
fraction. The variability in the scaled solution time data
indicates differences in efficiency of pruning the search
tree, for the heuristics used in the recursive solution
algorithm [25]. Closer examination of the data (not shown)
suggests this efficiency is dependent approximately on the
ratio L/R.

2.4 Fragmentation of the solution space
Previously it was considered whether there is any solution to a
given instance of the SNQ. Here the structure of the space of
all satisfying solutions for an instance is examined, as
determined via exhaustive enumeration.

Consider a fixed target sequence T and a set of potential
crosstalk sequences fCg. Imagine introducing crosstalk
sequences one at a time, and identifying the set of all
sequences fsNg that satisfy the SNQ for that instance with
N crosstalk sequences. Of particular interest here is the size
and structure of the solution set {sN } as a function of the
number of proteins N. For each set, a graph is assembled
whose nodes are sequences s that satisfy the SNQ and
whose edges connect satisfying sequences if they are
neighbours on the hypercube, that is, if their Hamming
distance from each other is 1. This graph represents the
neutral network of all solutions to a given instance of the
SNQ , along which single point mutations to the solution
string (bit flips) can be made without producing crosstalk.
For various N, we compute the set of connected

Figure 3 Scaling description of the SAT–UNSAT transition in the SNQ
a Schematic depiction of the covering of available sequences (black dots) in the target volume as crosstalk proteins (grey circles) are laid
down randomly
b and c Scaling of the satisfiability and run time data in Fig. 2 based on the scaling theory presented: (b) the number of crosstalk proteins
N are scaled by N ! (N2 Nc)/Nc, and (c) in addition to scaling N, the run times t are scaled by the number of sequences in the target
volume V (L, R) that must be considered
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components of the resulting graph. The change in the
structure of the neutral network of satisfying solutions is
illustrated, for a particular family of problem instances with
L ¼ 16 and R ¼ 6, in Fig. 4. For small numbers of
proteins (Fig. 4a), there are many possible solutions to the
SNQ , and those solutions all coalesce into one connected
cluster, such that any solution can be reached from any
other via a succession of single-bit flips to the solution
string. As N increases (Fig. 4b), the number of satisfying
solutions decreases, and the connected cluster of solutions
is fragmented into many disjoint sets (still dominated by a
central core). This fragmentation and evaporation of the
sequence clusters continue for larger N (Fig. 4c), until
finally all solutions disappear, and unique signalling is no
longer possible. While the neutral networks shown reveal
the effects of mutations in the solution string s, it should
be noted that single point mutations in the sequences
representing the centres of the proteins T and {C} – that
is, mutations in the SNQ instance itself – can result in
drastic changes in the neutral network topology, for
example, by fragmenting a single large cluster into a set of
smaller ones.

A summary of these trends is shown in Fig. 4d, by
averaging over many SNQ instances (for L ¼ 16 and
R ¼ 6). This reveals that the size (i.e. the number of
nodes) of the largest cluster (solid line) decreases roughly
exponentially with crosstalk number N. We can understand
this decrease in part by considering the geometric argument
summarised in Fig. 3a, which suggests that the size of the
largest cluster should decrease approximately as e2qN, where
q ; V (L, R)=VO(L) (see the supplementary text for
details). Also shown in Fig. 4d is the number of disjoint
clusters (dashed line); this is seen to initially increase with
N – as the single satisfying solution cluster is fragmented –
and then decrease – as small sequence clusters evaporate in

the presence of new crosstalk proteins. Fig. 4 reveals a
number of isolated clusters of size 1, but these problem
sizes are rather small (given the computational burdens of
exhaustive enumeration). It is an open question whether
nontrivial cluster size distributions will reveal themselves as
larger problem sizes are considered.

3 Discussion
The goal of this paper has been to examine the limits of
crosstalk-free communication in a simple model of
competitive molecular interactions, as a first step towards
developing a more comprehensive and realistic theory
applicable to protein–protein and protein-DNA interactions
involved in regulation and signalling. The numerical
experiments presented were motivated by phase transitions
observed in the random K-SAT problem [27–30], where a
SAT–UNSAT transition occurs as the ratio of constraints
to variables is increased. The numerical results presented
for the SNQ demonstrate something similar: a relatively
sharp transition from satisfiability to unsatisfiability with
increasing competition for sequence space, along with an
increase in computational complexity near the transition.
Phase transitions have been studied in a number of NP-
hard problems, although applications to biological problems
have been scant and generally at coarser levels of biological
description [31–33]. A second phase transition has more
recently been identified in K-SAT, lurking near the SAT–
UNSAT phase boundary, involving the fragmentation
of the set of satisfying solutions [34–36]. We find
evidence for such a fragmentation transition in small
instances of the SNQ , although further theoretical and
computational work is needed to fully characterise these
transitions, which are only strictly defined in the limit of
infinite system size.

Figure 4 Fragmentation of the solution space as the SAT–UNSAT transition is approached
The neutral network of satisfying solutions fsNg for one particular problem instance (L ¼ 16, R ¼ 6), as a function of number of crosstalking
proteins N
Satisfying sequences (nodes) are connected by edges (lines) in a network if they are separated by Hamming distance 1
The spatial layout of nodes has no meaning; all sequences are vertices on an L-dimensional hypercube
a N ¼ 4: there are 5786 satisfying solutions in one large connected component. This cluster is broken up into multiple pieces as
N increases
b N ¼ 12: 1226 sequences are distributed among 18 connected components
c N ¼ 20: only 85 sequences remain viable, scattered across 38 disjoint components
d For L ¼ 16, R ¼ 6, average values of the size of the largest connected sequence cluster (solid line) and the number of disjoint clusters
(dashed line) as a function of N, averaged over 100 SNQ instances for each value of N
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The scaling of the SNQ transition – embodied in the
critical number of crosstalking proteins in (1) – can be
interpreted as a type of bound on the size of a molecular
interaction code. Such a code is envisioned as relating two
sets of molecules (e.g. proteins and their substrates), and
the fidelity of communication in a molecular channel is a
function of how reliably discrimination of signals can be
achieved [37]. Bounds of this sort are common in coding
theory, the most well-known being the sphere-packing
bound derived by Shannon [5, 6]. The sphere-packing
bound identifies the maximal number of spheres of
Hamming radius R and dimension L that can be packed
without overlap, such that a word with up to R errors can
be unambiguously associated with a code word. Using the
notation developed here, that implies that no more than
the integer part of V0(L)=V (L, R) spheres can be disjointly
arranged. The random satisfiability bound derived in (1)
allows for denser, overlapping packings, since it considers
only whether any message can be unambiguously associated
with the target protein. Fig. 5 compares the sphere packing
and random satisfiability bounds for some representative
parameter values. The bound presented in (1) is explicitly
applicable to binary sequences without reverse-complement
symmetry. It is straightforwardly generalisable (see
supplementary text), within the assumption that binding is
entirely dictated by the Hamming distance between two
sequences, to sequences with larger alphabets (e.g. 20
amino acids) or to sequences with reverse-complement
symmetry (e.g. as has been done for other code bounds
treating DNA sequences [11, 38]).

Given the extreme simplicity of the model studied here, it
is reasonable to ask whether the phenomena reported are
relevant to the biology of protein–protein and protein–
DNA interactions in cellular regulation and signalling.
Those interactions are of course not dictated by Hamming
distances and sharp cutoffs, but rather by dynamic and
thermodynamic processes with softer thresholds
determining the probability of interaction. In addition,
interactions that might in principle be possible often do not
occur in practice because they are outcompeted by other
higher-affinity reactions, or even by a broad background of
non-specific interactions. In this case, we should consider a
sequence recognition volume as probabilistically defined,
and not intrinsic to a given protein but dependent upon
the context in which that protein finds itself. Despite these
differences, molecular discrimination formally remains a
constraint satisfaction problem regardless of the underlying
details of representation and interaction, and phase
transitions should in principle be possible. The larger
question, in some sense, is whether biological systems
actually do butt up against such constraints in their
function and evolution. Clearly more work is needed to
answer this, in part to identify the number of specificity-
determining bases and/or residues in various protein–DNA
and protein–protein interactions, as well as the effective
alphabet size contributing to molecular discrimination. The
experimental work reported in [17] demonstrated an increase
in cross-reactivity among yeast SH3 domains and single-
base-pair missense Pbs2 mutants, suggesting that the Pbs2
ligand lies near the periphery of a sparse and tenuous
sequence niche. In related computational work motivated
by sequence niches in SH3 signalling, Sear introduced a
model based on a four-letter amino acid alphabet
(hydrophobic, polar, positively and negatively charged) and
equilibrium-binding kinetics to demonstrate that the
mutual discrimination of a set of proteins and their
substrates was possible [24]. Molecular modelling of
protein–protein and protein–DNA interactions is not yet a
broadly practical tool, and many computational predictions
are instead based on sequence similarity with training data
from experiments [39–41] or from comparative sequence
analysis [15, 42]. One interesting question is whether
analysis of cross-reactivity and sequence niches can provide
more sensitive tests of the accuracy of predicted interactions.
Also of interest is the geometry of recognition domains in
real biological systems. The Hamming spheres considered
here are compact, but it is unknown whether regulatory and
signalling proteins recognise more convoluted sets of
sequences, which could introduce even more geometric
structure into the problem of mutual discrimination.

The biological implications of these sorts of constraints
and transitions are also of interest. Nature has of course not
produced random sequences, and a central question is what
sorts of molecular codes has evolution uncovered to achieve
reliable signalling. Have evolutionary innovations – such as
novel interaction domains [11] or scaffolds that localise
signalling proteins and confer context-dependent specificity

Figure 5 Comparison of sphere packing (sphere) and
random satisfiability (SAT) bounds on the size of a
molecular code, for various L and R
Inset: the ratio of SAT/Sphere bounds for the data shown
The SAT bound allows for more dense packing of spheres since not
all sequences need to be disambiguated
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in addition to the intrinsic sequence [43–46] – arisen to
rescue cellular networks from the precipice of crosstalk?
Fragmentation of the network of satisfying solutions of the
sort demonstrated here leads to complex neutral network
topologies. The extent to which neutral network topology
influences evolution remains an open question [47, 48].
Neutral network fragmentation could lead to biological
systems becoming frozen in local regions of sequence space,
unable to mutate to other satisfactory configurations far
away. This could produce a sort of speciation at the
molecular scale, perhaps shedding light on phylogenetic
relationships among related protein interaction domains.
Larger-scale genomic rearrangements, such as homologous
recombination and horizontal transfer, may play a role in
helping biological communication systems become unstuck
from a glassy, fragmented phase where single-point
mutations are unable to do so. Addressing the question of
evolving sequence niches, however, requires an appropriate
definition of fitness. If discrimination among different
sequences were the only determinant of fitness, we might
expect encodings to more closely resemble sphere packings,
with recognition volumes maximally distinct from one
another. Other determinants could alter such packings,
however; a fitness advantage from some weak crosstalk,
perhaps as a form of degeneracy or functional redundancy
[49], might keep recognition volumes from diverging too
far from one another. And of course evolutionary mutation
itself plays a central role in posing these constraint
satisfaction problems, in that gene duplication leads to the
creation of homologous proteins that recognise similar
substrates. The random limit considered here, while useful
for analysis, is not directly relevant to the biology of
duplicated proteins that may diverge from one another just
far enough to be distinguishable [10].

4 Acknowledgments
This work was supported by USDA-ARS project 1907-
21000-027-03. I would like to thank Jim Sethna, Bart
Selman, Carla Gomes, Walter Fontana, Marc Mézard, Sue
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1. Derivation of critical number of crosstalking proteins (random satisfiability

bound)

Here we derive the result stated in eq. (1) of the main text, the critical number of crosstalk-

ing proteins Nc for a given sequence length L and promiscuity radius R, which we can in-

terpret as a random satisfiability bound for the size of the protein-protein interaction code.

A given instance of the SNQ is unsatisfiable if the target volume (i.e., the Hamming sphere

of radius R surrounding the target sequence T ) is completely covered by the union of the

crosstalk volumes (centered about the crosstalk sequences {C}), a process that is illustrated

schematically in the main text in Fig. 3(a). We can estimate the critical number of crosstalk

proteins Nc needed to cover the sequence volume of the target protein. For a given binary

string of length L, the number of sequences V (L,R) in a ball of Hamming radius R is

V (L,R) =
R∑

n=0

(
L

n

)
(S1)

and the total possible number of sequences V0(L) is

V0(L) = 2L (S2)

Let q be the ratio of these sequence volumes:

q ≡ V/V0 (S3)

We consider depositing at random sequence volumes of size V (L,R) in a space of volume

V0(L). From the binomial distribution, the probability that a given point in sequence space

is covered n times after N proteins have been deposited is

Pq(n|N) =

(
N

n

)
qn(1− q)N−n (S4)

Therefore the probability Uq(N) that a given point in sequence space is left uncovered by N

proteins is

Uq(N) = Pq(0|N) = (1− q)N (S5)

We can thus estimate the average number of sequences Su(V, q,N) in the target volume V

left uncovered by N proteins to be

Su(V, q,N) = V (1− q)N (S6)
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We wish to estimate the critical number of proteins Nc required to cover the target volume;

since the sequence space is discrete, we estimate Nc as the number of proteins for which

there is O(1) remaining uncovered sequence in the target volume. This yields

V (1− q)Nc = 1 (S7)

which implies

Nc =
log(1/V )

log(1− V/V0)
(S8)

The estimate (S8) appears to adequately describe the SNQ simulation data presented in

the main text, as indicated by the scaling collapses shown in Fig. 3 of the main text. We

expect the quality of the estimate to degrade, however, as the discrete nature of the sequence

space becomes more important, i.e., as the number of sequences in the target volume V (L,R)

becomes small (of O(1)). Indeed, for the situation R = 0, where there is only one sequence

in the target volume to be covered (namely the target sequence T ), the estimate (S8) yields

Nc = 0. For this case, however, we can independently estimate the number of randomly

situated crosstalking sequences required to insure that the target sequence T is covered with

probability 1/2:

1− (1− q)N
R=0
c = 1/2 =⇒ NR=0

c = log(1/2)/ log(1− q) = log(1/2)/ log(1− 1/V0) (S9)

The result (S8) assumes an alphabet size A = 2 (i.e., binary sequences). We can gen-

eralize the satisfiability bound in a straightforward manner, if we assume that binding of

two sequences continues to be dictated by a maximal Hamming distance, i.e., two sequences

s1 and s2 will bind if H(s1, s2) ≤ R. In this case, the form of the bound (S8) remains

unchanged, and we need simply redefine the relevant sequence volumes corresponding to an

alphabet of size A:

V (L,R) = V (L,R,A) =
R∑

n=0

(
L

n

)
(A− 1)n (S10)

V0(L) = V0(L,A) = AL (S11)

In the case of reverse complement symmetric (RCS) sequences (e.g., for binding of protein

to DNA in the regulation of gene transcription), the bound is reduced because each sequence

in the target volume can be covered either by a ball centered within Hamming distance R
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of the sequence, or by a ball centered within distance R of the reverse complement of that

sequence. This has the effect of doubling the coverage ratio q: q ≡ 2V/V0. As a result,

NRCS
c =

log(1/V )

log(1− 2V/V0)
(S12)

which is only valid for R < L/2. For R ≥ L/2, NRCS
c = 1.

The main text alludes to a symmetric generalization of the SNQ that asks whether ev-

ery protein in a collection is distinguishable, that is, whether there is a separate sequence

niche for each of N proteins. While we do not have a general estimate for the critical

number of proteins Nc for this problem, we can produce such an estimate for the special

case of R = 0, where crosstalk occurs only if two sequences are exactly the same (no mis-

matches). In that limit, the question boils down to this: For binary sequences of length

L, how many randomly chosen sequences must be chosen for there to be a probability of

at least 1/2 that two sequences are identical? This is just the classic “birthday problem”

of probability theory, for a system where a “year” contains V0 = 2L possible days (see,

e.g., http://en.wikipedia.org/wiki/Birthday_problem). The probability p(n) that two

sequences out of n will match is:

p(n) = 1− V0!

(V0 − n)! V0
n (S13)

so, for a given sequence length L, we can find the number Nc for which this probability

exceeds 1/2 to arrive at an estimate for the R = 0 bound of the generalized SNQ.

2. Size of the largest solution cluster

Fig. 4(d) of the main text demonstrates that the size S0 of the largest cluster (solid line)

decreases roughly exponentially with crosstalk number N . From the geometric argument

illustrated in Fig. 3(a) in the main text, we might expect

S0 ∼ (1− q)N ≈ exp(−qN) for small q (S14)

where q ≡ V (L,R)/V0(L). For L = 16, R = 6, q ≈ 0.23, and a fit to the cluster size data

in Fig. 4(d) reveals S0 ∼ exp(−0.29N). The exponential approximation to the power law

in eq. (S14) would be more accurate for smaller q, but part of the discrepancy between
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the predicted and measured decay rate is due to the fact that the geometric argument only

describes the elimination of viable sequences by crosstalk proteins, and not the fragmentation

of clusters. Some of the decrease in S0 is due to the latter effect.

3. Review of results from Zarrinpar, Park and Lim

We describe here in slightly more detail the experimental results of ref. [1] (ref. [17] in

main text). Zarrinpar et al. investigated SH3-mediated signaling in yeast (Saccharomyces

cerevisiae), probing in particular the signaling pathway involved in a high-osmolarity re-

sponse, predicated on the interaction of the Sho1 protein (containing an SH3 domain) and

the Pbs2 protein (with an exposed proline-rich, PXXP, peptide sequence). Experimentally,

they created chimeric versions of the Sho1 protein, replacing the native SH3 domain with

each of the other 26 SH3 domains found in yeast. (Three of the Sho1 chimeras were insoluble,

however, so they could not be assayed in vivo.) They then sought to determine whether any

of those domains could reconstitute the function of the high-osmolarity pathway, and found

that none of the other yeast domains could so function. In vitro peptide binding assays also

carried out revealed a similar lack of interaction from any but the Sho1-Pbs2 pair. When

SH3 domains from 12 metazoan proteins were tested (both in vivo and in vitro), however, it

was discovered that 6 of those were able to reconstitute the function of the high-osmolarity

pathway. Their interpretation was that there has been an evolutionary selection against

crosstalk in yeast, whereby domains and peptides have evolved such that the Pbs2 PXXP

motif lies in a niche in sequence space where it is recognized by only the Sho1 SH3 domain,

as is illustrated schematically in Fig. S.1(a). Since there has been no such selection pressure

in other organisms, it was perhaps not surprising that the Pbs2 motif overlaps with the

recognition volumes of many of non-yeast SH3 proteins, as is illustrated in Fig. S.1(b).

Zarrinpar et al. also sought to characterize the nature of protein-protein interactions in the

sequence space surrounding the wild-type Pbs2 motif, which they did by assaying a library

of 19 single-base-pair missense mutations to the native yeast Pbs2 motif (leaving the core

prolines of the PXXP motif unchanged). While some mutations resulted in increase affinity

for Sho1, and some resulted in decreased affinity, all mutations resulted in an increased cross-

reactivity with other yeast SH3 domains. This suggests that the wild-type Pbs2 is optimized
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not for affinity, but for discrimination among different SH3 domains.

4. Methods

To ascertain whether a given instance of the SNQ was satisfiable or not, I implemented

the algorithm by Gramm et al. [2] (“Algorithm D” in [2], modified as described to treat the

Distinguishing String Selection Problem). This is a recursive, backtracking algorithm in the

style of Davis-Putnam(DP)-type methods used in the study of other NP-complete problems

(e.g., k−SAT [3]). Algorithm D in [2] implements heuristics to prune the search tree, tailored

to the Distinguishing String Selection Problem (DSSP). DP-type algorithms are known to be

significantly slower in practice for k−SAT than other algorithms (e.g., WalkSAT [4] or survey

propagation [5]), but have the advantage of being complete, i.e., able to determine whether

any instance is satisfiable or not, given sufficient computer time. (Incomplete algorithms can

typically find a solution if there is one, but are not guaranteed to stop if there is no solution.)

For forays into a newly-identified NP-complete problem such as this, complete algorithms

are a useful first step. For each SNQ instance, it was determined whether the instance

was satisfiable, and how long it took to decide that question. Since DP-type methods are

recursive, it is conventional to measure algorithm run times in units of number of calls to

the recursive core, which is what we have done here.

The SNQ, as stated, applies to any set of sequences T and {C}. This paper has focused
on random instances of the SNQ, where the relevant sequences are sampled uniformly at

random from the set of all binary sequences of length L, with equal probabilities of 0 and

1 in the sequences T and {C}. Simulations of random instances of the SNQ were carried

out, for various values of the relevant control parameters: the string length L, the Hamming

radius R, and the number of crosstalk proteins N . Average satisfiability and median solution

time were computed from 100 random SNQ instances for each set of L, R, and N .

To explore the full solution space of SNQ instances, exhaustive examination was carried

out. For each of the possible 2L sequences, it was determined whether that sequence satisfied

the given SNQ. The set of valid solutions was assembled to form an undirected graph, whose

nodes were SNQ solutions and whose edges joined nodes with sequences that differed by

Hamming distance of 1, i.e., by 1 bit flip. The network analysis package NetworkX [net-
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workx.lanl.gov] was used to compute connected components of the resulting graphs, and to

generate layouts for visual display. This work motivated a contribution on my part to the

NetworkX source code repository [networkx.lanl.gov/changeset/223], using tuples of index

coordinates to label grid graphs, such as would be used to represent an L-dimensional hy-

percube. This representation is natural for graphs connecting nodes in sequence space. A

spring force layout algorithm was used to generate the images in Figs. 4(a)-(c) in the main

text, whereby connected nodes are attracted to each other to produce compact representa-

tions of connected components. As noted, however, the positions of the graph nodes in Figs.

4(a)-(c) have no intrinsic meaning, as all nodes are vertices on the L-dimensional hypercube.

The problem of usefully visualizing complex network structures in high-dimensional sequence

spaces is an ongoing challenge in computational biology.
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FIG. S.1: The interpretation offered by Zarrinpar, Park and Lim to describe (a) the lack of crosstalk

among S. cerevisiae SH3 domains and (b) the presence of crosstalk among non-S.cerevisiae SH3

domains. [Adapted from [1].] (a) In S. cerevisiae, evolutionary selection against crosstalk has

driven the proline-rich Pbs2 motif to a niche where it is recognized only by the Sho1 SH3 domain.

(b) There is no such selection pressure in other organisms, so domains introduced from elsewhere

can bind Pbs2.
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