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ABSTRACT 
 
We examine some of the software implications of multiscale modeling of material deformation and fracture.  
Research in this field is aided through the development of flexible software frameworks for managing 
disparate degrees-of-freedom, constructing complex models, and interrogating simulation data at various 
scales.  We describe some of the highlights of our Digital Material system for multiscale materials modeling, 
and discuss its use in the study of intergranular fracture in polycrystals. 
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INTRODUCTION 
 
Computational mechanics, in general, and computational fracture mechanics, in particular, are becoming 
increasingly multidisciplinary.  This trend is driven to a large extent by a desire and need to model material 
structures at many length and time scales, in order to more faithfully capture processes of relevance to 
material deformation and failure.  Modeling across scales, however, introduces a new set of challenges, such 
as the need to develop frameworks for composing software components and material descriptions, manage 
disparate computational degrees-of-freedom in a consistent fashion, and construct algorithms that can exploit 
multiscale representations. 
 
In this paper, we highlight some of the software challenges posed by multiscale modeling of materials 
deformation and failure, and discuss some of the approaches we have taken to build useful computational 
problem-solving environments for the study of such problems.  We will discuss an application example using 
some of these tools, namely the modeling of decohesion of grain boundaries in polycrystalline materials. 
 



 
 
 
 
MULTISCALE MODELING OF MATERIAL DEFORMATION AND FAILURE 
 
Multiscale modeling is in many ways a problem of optimization, balancing the desire for greater fidelity 
(gleaned from explicit inclusion of smaller-scale degrees-of-freedom) with the need for compact and efficient 
modeling forms (typically embodied in more coarse-grained descriptions).  One is striving, in some sense, for 
the smallest possible set of modeling degrees-of-freedom that are capable of describing the phenomena of 
interest.  Conventional single-scale models, such as descriptions of continuum fields evolving according to 
constitutive laws, are able to offer compact representations, but often at the expense of having ad hoc 
constitutive models characterized by a large and unsystematic set of adjustable parameters.  One of the 
benefits of multiscale modeling is that the space of material behaviors being approximated by these ad hoc 
constitutive models can be factored into a geometric piece and a functional piece.  Collections of smaller-
scale structures, described in turn by their own constitutive laws (which one hopes are more fundamental and 
less ad hoc than the more coarse-grained constitutive laws), are allowed to organize themselves geometrically 
in order to produce an effective constitutive description at larger-scales.  The recently developed 
quasicontinuum method [1], for example, can be thought of as an extension of the finite-element method for 
solving continuum models of material response, where atoms are introduced and allowed to organize under 
their own mutual self-interaction in order to provide better constitutive descriptions of materials containing 
lattice defects.  In many situations, however, it is far preferable to perform multiscale modeling implicitly, by 
finding a reduced-order description of  smaller-scale processes for inclusion at larger scales.  One approach of 
ours has been to focus on the development of appropriate functional forms that are capable of capturing the 
smaller-scale behavior [2].  In many cases, these functional forms have nonanalytic behavior (e.g., near 
bifurcations, or near configurations with high symmetry) that will dictate what small-scale information is 
most crucial for accurate modeling.  It is important to study coarse-grained theories to try to determine what 
information from smaller scales is needed, rather than simply “throwing over the wall” information from 
small scales for use elsewhere. 
 
Modeling of the behavior of materials across scales, however, differs from standard multiscale techniques in 
that the relevant material degrees-of-freedom vary widely from scale to scale.  (Conventional numerical 
methods designed to address problems with structure on many scales benefit from the self-similarity of those 
methods across scales. Techniques such as multigrid [3] and multiresolution wavelet analyses [4] introduce 
bases or other discrete representations of continuum fields which represent equivalent types of information at 
each scale.)  Fracture mechanics, for example, has been studied computationally at many scales, involving a 
whole menagerie of material structures, including electrons, atoms, vacancies, dislocations, voids, dislocation 
structures, grains, grain boundaries, and various continuum fields (see Figure 1).  
 

(a)  (b)  (c)  
Figure 1.  Models of materials at various scales.  (a) Continuum fields at the macroscale; (b) Polycrystalline grain 
assemblies at the mesoscale; (c) Atoms near a grain boundary at the nanoscale. 
Because of such diversity and heterogeneity, management of these degrees-of-freedom is significantly more 
complex than in methods such as multigrid.  Furthermore, the fundamental algorithms required to efficiently 



 
 
 
pass information across scales are not well-understood.  Therefore, it is imperative that one construct 
software environments that provide flexible and expressive mechanisms for composing material descriptions 
and numerical kernels in order to experiment with different classes of models, algorithms, descriptions, etc. 
 
This problem of component composition therefore becomes paramount.  In order to explore a variety of 
material structures in a variety of different contexts, it is important to develop appropriate computational 
abstractions so that components may be reused.  We would like to be able to synthesize, for example, the 
relevant pieces of code for molecular dynamics (MD) modeling with those for finite-element modeling in 
order to implement the quasicontinuum (QC) method, without having to maintain two separate bases of code 
for MD and QC.  In addition, we would like to be able to compose high-level geometric descriptions (say, 
parameterizing a polycrystalline collection of grains with different lattice orientations) with underlying 
numerical models in order to build complex applications out of constituent pieces. 
 
SOFTWARE ENGINEERING FOR MULTISCALE MODELING: DIGITAL MATERIAL 
 
We have been addressing some of these issues through the development of Digital Material, an amalgam of 
software frameworks designed to support multiscale investigations of material structure and response [5].  
This effort has many facets.  Considerable activity has gone into developing a framework for atomistic 
simulations (e.g., MD, QC, etc.), which we will describe in more detail below.  One application of the 
atomic-scale modeling framework is to provide quantitative input to mesoscale finite-element models of grain 
boundary fracture in polycrystals [6].  A different set of problems revolves around the use of phase-field 
models to study problems of interfacial evolution, including the formation and propagation of cracks [7].  Yet 
another area of investigation centers around the characterization of texture (orientation and misorientation 
distribution functions) in polycrystals [8], with one goal of relating texture to microcrack initiation and 
growth.  Finally, we continue to work to build software bridges between these tools and more conventional 
finite-element software systems for investigating crack growth in continuum models [9]. 
 
The Digital Material system is built upon a set of broad software design philosophies.  First, we have sought 
to develop abstractions that separate 
material structures from algorithms 
or numerical models that act on 
those structures.  This is important 
because a central feature of 
multiscale modeling is that a given 
material structure can play different 
roles in different contexts, 
depending on how it fits into a 
larger material model.  Second, in 
order to support the sort of flexible 
and expressive software 
composition described above, we 
make use of extensions to object-
oriented design techniques such as 
design patterns [10] to encapsulate 
aspects of our programs that need to 
change.  Design patterns deal with 
the collaboration between sets of 
computational objects.  In our 
system, design patterns are used, for 
example, to enforce the separation 
between material structures and the 

from MD3D import *
from BiCrystalInitializer import *

potential = EMTPotential('Cu')
latticeConstant = potential.GetLengthScale() * sqrt(2)
lattice = FCCLattice(latticeConstant)
atoms = PrimitiveListOfAtoms()
cutoff = potential.GetCutoffDistance()
neighborLocator = CellNeighborList(cutoff, .05*cutoff)

atoms.SetNeighborLocator(neighborLocator)
atoms.SetMass(63.54)

pbc = SimplePeriodicBoundaryConditions()
atoms.SetBoundaryConditions(pbc)

initializer = SymmetricalTiltGBInitializer(lattice,
[lengthX, gbLength, minWidthZ],
interfacePlane = [2, 2, 1],
normalPlane = [1, -1, 0], bc)

initializer.Create(atoms)
print 'The number of atoms is :', atoms.GetNumber()

Figure 2.  Sample Python script showing the initialization of some of the  
components used in an atomistic simulation of grain boundary decohesion. 



 
 
 
algorithmic tools that act to modify or interrogate those structures.  While some of the standard design 
patterns (e.g., observers) are appropriate for large-scale scientific computing, other patterns need to be 
developed in recognition of the constraints imposed by numerical modeling.  In particular, the need for high 
computational performance has led us to phrase many of our basic abstractions in terms of aggregates of 
material objects (e.g., collections of atoms), so that those aggregates can be acted on efficiently without 
incurring a large computational overhead.  Finally, we recognize the value of having high-level, interpreted 
control of our simulations, in order to support rapid prototyping, component composition, and interactive 
interrogation of simulation data.  To achieve this, we use Python [11], an interpreted, object-oriented 
programming language, to drive many of our computational kernels and to “glue” together sets of 
computational objects.  SWIG [12] is another system that assists in this process: SWIG generates the 
necessary glue/wrapper code for Python to talk to underlying C++ objects and functions, based on C++ 
interface declarations (e.g., class definitions and function prototypes). An example Python script for setting 
up an atomistic simulation of grain boundary fracture is shown in Figure 2.  From within Python, users are 
able to manipulate references to compiled C++ objects as if they were native Python objects. 
 
 
APPLICATION EXAMPLE: GRAIN-BOUNDARY FRACTURE 
 
As mentioned, one of our goals is to provide quantitative input to mesoscale finite-element models of grain 
boundary fracture in polycrystals [6]. At the mesoscopic scale, the polycrystal is modeled via finite elements 
where the geometrical and physical properties of the grains are individually taken into account.  At that scale, 
grain boundaries are modeled with interface elements, whose behavior is governed by a cohesive zone model 
(CZM), which relates the traction on the interface to its opening. We are conducting atomistic simulations of 
grain boundary decohesion, in part to provide appropriate CZMs for the mesoscale modeling.  This work 
aims to develop not only cohesive models for a single grain boundary, but functional forms describing entire 
families of grain boundaries as parameterized by the orientations of the adjacent grains.  
 
The main quantities we are interested in are the energy release rate, the peak stress and the range of the 
cohesive zone model. The energy release rate is the integral of the traction-separation curve, and represents 
the amount of energy per unit length that is dissipated in the crystal while the crack tip propagates. For a 
grain boundary in 3 dimensions, the CZM parameters will be functions of 5 independent degrees of freedom 
(DOFs): 3x2 rotational DOFs describing the orientation of the two adjacent grains, minus 1 DOF associated 
with invariance due to rotation of both grains about the normal to the interface.  (We may choose to add other 
parameters, such as temperature, which play a role in the nature of the decohesion).  Often one considers only 
3 parameters, describing the interface misorientation.  In doing so one assumes that the orientation of the 
interface does not play a significant role. This is a great simplification, but is hard to justify. For example, the 
limit of zero misorientation corresponds to the single crystal, for which lattice effects make crack propagation 
properties very anisotropic.  On the other hand, special grain boundaries with reduced numbers of DOFs, 
such as symmetrical tilt grain boundaries (STGBs), can be usefully studied. 
 
We have performed some preliminary simulations of STGBs, such as that depicted in Figure 3(a).  These 
boundaries allow the use of periodic boundary conditions in the plane of the interface (typically around 10 
atomic layers thick).  In the orthogonal direction, we enforce prescribed displacement boundary conditions 
through the imposition of constraints on the outer two layers of atoms at either boundary.  (Fixed 
displacement conditions on the outer layer results in a pinning of emitted dislocations at the outer boundary.  
Alternatively, constraining the center-of-mass motion of the outer layers allows such dislocations to exit the 
system.  Switching between different types of constraints is straightforward in our system since constraints 
are specified in separate objects that are attached to the group of atoms being simulated.)  We have performed 
dynamical simulations with a Verlet algorithm that periodically rescales the velocities of the atoms such that 
a fixed temperature can be prescribed.  
 



 
 
 
We want to relate the opening of the interface and the traction in the surrounding bulk. Defining the opening 
of the grain boundary is a delicate task because from the atomistic point of view, there is no distinction 
between atoms that belong to the bulk and atoms that belong to the grain boundary.  Briefly, we assume that 
on the external boundaries of the grains the stress is uniform. This assumption calls for a grain size large 
compared to the emergent inhomogeneities in the grain boundary. We also assume that the displacement of 
the atoms far from the interface can be written as δ+⋅ ) += 0,( nn uu ε1 , where n is the index of the atom with 

position 0,nu  in the unstrained grain boundary, ε  is the strain tensor, and δ is defined as the grain boundary 

opening. (More precisely, we can sum up the contributions to δ  from each grain). That the above 
decomposition can be done must be checked on a case-by-case basis.  The actual determination of δ  and ε  
can be done by linear regression. The relevant points should be located as far as possible from the interface 
but not too close to the external constrained surface. We expect some inhomogeneities in the directions 
orthogonal to the GB, so we compute an average of δ  over the entire simulation box.  

(a)     (b)  

Figure 3.  Decohesion of a [441] symmetric tilt  grain boundary (i.e., the plane of the boundary is a [441] plane for each 
grain).  (a) Snapshot from an MD simulation, highlighting those atoms used in the linear regression to determine the 
traction-separation relation.  (b) Traction-separation curve derived from MD simulation. 
A lingering difficulty is that the CZMs they provide are not, in and of themselves, so useful for the mesoscale 
finite element models. Typically the energy release rate and the range of the cohesive zone model are too 
small and the peak stress is too high.  We are currently exploring reasons for these discrepancies.  For 
example, the size of the atomistic system is very small compared to the typical size of the mesoscale interface 
elements: in an MD box the GB length is about 10 nm, while the width and thickness of the grains is of the 
order of 3 nm. With these dimensions the allowed ductility is quite small: the maximal opening will typically 
be on the order of a nanometer.  One of our goals is to understand how the size of the damage zone scales 
with the dimensions of the atomistic simulation.  Additionally, the properties of polycrystals crystals are often 
dominated by defects.  Real materials will be substantially more heterogeneous than our simulation samples, 
and the large peak stress we measure in MD might naturally be explained by the lack of inelastic behavior 
driven by defects in the sample (e.g., acting as sites for the nucleation of dislocations or microvoids).  
 
 
FUTURE DIRECTIONS 
 
There are several directions in which this work ought to be extended.  One important goal revolves around 
the notion of adaptivity.  Our current system is built to allow researchers to experiment with different sorts of 
multiscale representations and algorithms, so that more formal and general multiscale methods can be 
identified.  Our system encourages the development of heuristic approaches, which one would eventually like 



 
 
 
to automate, so that the system itself could adaptively select the appropriate level of resolution to address a 
certain problem.  Adaptivity needs to be broadly planned for at multiple levels: at the application level 
(where one might switch between models being solved based on the nature of the solution), at the algorithm 
level (where one might switch between different methods used to solve the problem at hand), and at the 
system level (where one might need to balance computational loads in response to changing resource 
requirements, or migrate to different platforms in response to changing resource availability). 
 
Even with advanced software engineering techniques, the barriers to composing complex and adaptive 
applications are still substantial, and we must consider what other sorts of software generation technologies 
are available to assist in that construction process.  One such system that we are beginning to explore is the 
Loci framework, developed by Ed Luke [13].  Loci is a system for synthesizing the control flow of large and 
complex applications by deducing that flow from dependency information among the computational 
components being assembled.  While this technology is still under development and being extended to handle 
larger classes of numerical models, there is promise that a system such as Loci might automate the 
construction of complex, distributed, multiscale applications from high-level problem specifications. 
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