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Many-Core, not Manticore... 
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Many-Core Computing in High Energy Physics 
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LHC: The Super Collider! 
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The Large Hadron Collider 

smashes beams of protons 

into each other, as they go 

repeatedly around a ring 

17 miles in circumference 

at nearly the speed of light 



Collision Energy Becomes Particle Masses: E=mc2 
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Higgs Discovery @ LHC 
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Big news on July 4, 2012! 



Big Data Challenge 
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• 40 million collisions a second 

• Most are boring 

– Dropped within 3 μs 

• 0.5% are interesting 

– Worthy of reconstruction... 

• Higgs events: super rare 

– 1016 collisions → 106 Higgs 

– Maybe 1% of these are found 

 

• Ultimate “needle in a haystack” 

• “Big Data” since before it was 

cool 

 
http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html 

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html


CMS: Like a Fast Camera for Identifying Particles 
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Particles interact differently, so CMS is a detector with different layers to 

identify the decay remnants of Higgs bosons and other unstable particles 



Simulation of pile-up = 140  

at CMS in r-z plane  r 

z 

CMS Is About to Get Busier 

• By 2025, the instantaneous luminosity of the LHC will increase by a 

factor of 2.5, transitioning to the High Luminosity LHC (HL-LHC) 

• Significant increase in number of interactions per bunch crossing, 

i.e., “pile-up”, on the order of 140–200 per event 
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Reconstruction Will Soon Run Into Trouble 

• Higher detector occupancy puts a 

strain on read-out, selection, and 

event reconstruction 

• A slow step in reconstruction is 

tracking – combining ~106 energy 

deposits (“hits”) in the tracker to 

form charged-particle trajectories  

• Reconstruction time per event 

diverges for high pile-up in CMS: 

tracking is the biggest contributor 

• Can no longer rely on Moore’s Law scaling of CPU frequency to 

keep up with growth in reconstruction time – need a new solution 

• Can we make the tracking algorithm concurrent to gain speed? 
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Overview of CPU Speed and Complexity Trends 
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Committee on Sustaining Growth in Computing Performance, National Research Council.  

"What Is Computer Performance?"  

In The Future of Computing Performance: Game Over or Next Level?  

Washington, DC: The National Academies Press, 2011. 

discontinuity in ~2004 



How TACC Stampede Reached ~10 Petaflop/s 

• 2+ petaflop/s of Intel Xeon E5 

• 7+ additional petaflop/s of Intel 

Xeon Phi™ SE10P coprocessors  

• Follows the hardware trend of the 

last 10 years: processors gain 

cores (execution engines) rather 

than clock speed 

• So is Moore’s Law dead? No! 

– Transistor densities are still doubling every 2 years 

– Clock rates have stalled at < 4 GHz due to power consumption 

– Only way to increase flop/s/watt is through greater on-die parallelism 

• Architectures are therefore moving from multi-core to many-core 
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Photo by TACC, June 2012 



Xeon Phi: What Is It? 

• An x86-derived CPU featuring a large number of simplified cores 

– Many Integrated Core (MIC) architecture 

• An HPC platform geared for high floating-point throughput 

– Optimized for floating-point operations per second (flop/s) 

• Intel’s answer to general purpose GPU (GPGPU) computing 

– Similar flop/s/watt to GPU-based products like NVIDIA Tesla 

• Just another target for the compiler; no need for a special API 

– Compiled code is not (yet) binary compatible with x86_64 

• Initially, a full system on a PCIe card (separate Linux OS, RAM)... 

• KNL: with “Knight’s Landing”, Xeon Phi can be the main CPU 
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Many-Core Elements in Petaflop/s Machines 

• CPUs: Wider vector units, more cores 

– AVX instructions crunch 8 or 16 floats at a time 

– Single thread runs well; dozens are needed 

– Stampede example: peak DP, dual Xeon E5-2680 - 0.34 Tflop/s, 260W 

• GPUs: 1000s of simple stream processors 

– Single Instruction, Multiple Thread (SIMT): think vector units, not cores 

– Special APIs are required: CUDA, OpenCL, OpenACC 

– Stampede example: peak DP, NVIDIA Tesla K20 - 1.17 Tflop/s, 225W 

• MICs: 60+ CPU cores, floating-point efficiency 

– Slow clock, yet high flop/s from more/wider vectors, more cores 

– Intel compiler handles vectorization and multithreading of OpenMP code 

– Stampede example: peak DP, Xeon Phi SE10P - 1.06 Tflops/s, 300W 

– Next generation “Knight’s Landing” (KNL): ~3 Tflop/s, ~300W 
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Xeon Phi vs. Xeon 

 

Number of cores 

Clock speed (GHz) 

SIMD width (bits) 

DP Gflop/s/core 

HW threads/core 
 

 

• Xeon designed for all workloads, high single-thread performance  

• Xeon Phi also general purpose, but optimized for number crunching 

– High aggregate throughput via lots of weaker threads, more SIMD 

– Possible to achieve >2x performance compared to dual E5 CPUs 

SE10P Xeon E5 Xeon Phi is… 

61 8 much higher 

1.01 2.7 lower 

512 256 higher 

16+ 21+ lower 

4 1* higher 
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Where CPU Technology Is Headed Next: KNL 

• 72 cores, 2 VPUs/core, new RAM layer (fast memory or slow cache) 
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Two Types of MIC (and CPU) Parallelism 

• Threading (task parallelism) 

– OpenMP, Cilk Plus, TBB, Pthreads, etc. 

– It’s all about sharing work and scheduling  

• Vectorization (data parallelism) 

– “Lock step” Instruction Level Parallelization (SIMD)  

– Requires management of synchronized instruction execution 

– It’s all about finding simultaneous operations 

• To utilize MIC fully, both types of parallelism need to be identified 

and exploited 

– Need 2–4+ threads to keep a MIC core busy (in-order execution stalls) 

– Vectorized loops gain 8x or 16x performance on MIC! 

– Important for CPUs as well: gain of 4x or 8x on Sandy Bridge 
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Parallelism and Performance on Xeon Phi vs. Xeon 
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Courtesy James Reinders, Intel 



What Does the Tracking Algorithm Do? 

• Goal is to reconstruct the trajectory (track) of each charged particle 

• Solenoidal B field bends the trajectory in one plane (“transverse”) 

• Trajectory is a helix described by 5 parameters, pT, η, φ, z0, d0 

• We are most interested in high-momentum (high-pT) tracks  

• Trajectory may change due to interaction with materials 

• Ultimately we care mainly about: 

– Initial track parameters 

– Exit position to the calorimeters 

 

• We use a Kalman Filter-based technique 
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Why Kalman Filter for Particle Tracking? 

• Naively, the particle’s trajectory 

is described by a single helix 

• Forget it 

– Non-uniform B field 

– Scattering 

– Energy loss 

– ... 

• Trajectory is only locally helical 

• Kalman Filter allows us to take 

these effects into account, while 

preserving a locally smooth 

trajectory 
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science 

fiction... 

..vs. real 

materials 



Kalman Filter 

• Method for obtaining best 

estimate of the five track 

parameters 

• Natural way of including 

interactions in the material 

(process noise) and hit position 

uncertainty (measurement error) 

• Used both in pattern recognition 

(i.e., determining which hits to 

group together as coming from 

one particle) and in fitting (i.e., 

determining the ultimate track 

parameters) 
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R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html 

doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html


Kalman Example 
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Kalman procedure runs this way 

Final fit applies to whole dataset 

• Use Kalman 

procedure to 

estimate slope 

and y-intercept 

of a straight-line 

fit to noisy data 

• Parameter 

values improve 

as data points 

are added 

• 30-line script in 

MATLAB 

 



Tracking as Kalman Filter 
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• Track reconstruction has 3 main steps: seeding, building, and fitting 

• Building and fitting repeat the basic logic unit of the Kalman Filter... 

 

 

– From current track state 

(parameters and 

uncertainties), track is 

propagated to next layer 

– Using hit measurement 

information, track state is 

updated (filtered) 

– Procedure is repeated 

until last layer is reached 



Track Fitting as Kalman Filter 

• The track fit consists of the simple 

repetition of the basic logic unit for 

hits that are already determined to 

belong to the same track 

• Divided into two stages 

– Forward fit: best estimate at collision 

point 

– Backward smoothing: best estimate 

at face of calorimeter 

• Computationally, the Kalman Filter is 

a sequence of matrix operations with 

small matrices (dimension 6 or less) 

• But, many tracks can be fit in parallel 
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“Matriplex” Structure for Kalman Filter Operations 

• Each individual matrix is small: 3x3 or 6x6, and may be symmetric 

• Store in “matrix-major” order so 16 matrices work in sync (SIMD) 

• Potential for 60 vector units on MIC to work on 960 tracks at once! 
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M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M1+2n(1,1) 

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2 (1,N) Mn+2 (2,1) … , … Mn+2(N,N) 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(0,0) M2n(0,1) … M2n(0,N) M2n(1,0) … M2n(N,N) M3n(0,0) 

Matrix size NxN, vector unit size n = 16 for MIC → data parallelism 

f
a
s
t
 
m

e
m

o
r
y
 
d
i
r
e
c
t
i
o
n
 

R1 

R2 

…
 

Rn 

vector 

unit 



How Well Does Matriplex Work? 

• Fit benchmark: average of 10 events, 106 tracks each, single thread 

• Width of Matriplexes varies from 1 (quasi-unvectorized) to 16 (full) 

• Maximum speedup is only ~4.4x. What’s wrong? 
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Clues From Intel’s VTune 
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• Spending lots of time in routines that are unvectorized (or nearly so) 

• Ideal vectorization intensity should be 16 

• Subtract and CopyIn appear to be the top offenders 



More Clues From Optimization Reports 

• Intel compilers have an option to generate vectorization reports 

• One report showed a problem in a calling routine... 

 

 

 

 

 

 

 

• OK! – so outErr is both input and output. But we know that is totally 

safe, because Subtract just runs element-wise through the arrays 

• Compiler must often make conservative assumptions by default 
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outErr.Subtract(propErr, outErr); 

remark #15344: loop was not vectorized: vector dependence 
prevents vectorization. First dependence is shown below... 

remark #15346: vector dependence: assumed FLOW dependence 
between outErr line 183 and outErr line 183 



Fixing the False Vector Dependence 

• Just add a pragma to ignore vector dependence 

• Single change gives ~10% performance gain! (at full vector width) 
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MatriplexSym& Subtract(const MatriplexSym& a, 

                       const MatriplexSym& b) 

{ 

#pragma ivdep 

   for (idx_t i = 0; i < kTotSize; ++i) 

   { 

      fArray[i] = a.fArray[i] - b.fArray[i]; 

   } 

} 



CopyIn: Initialization of Matriplex from Track Data 

• Load into register: simple vector copy 

• Store from register: messy stride-N write? 
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M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) 
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…
 

…
 

…
 

…
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…
 

M1(1,N) 

M1(2,1) 

…
 

M1(N,N) 

M1(1,1) 

M1(1,2) 

…
 

M1(1,N) 

M1(2,1) 

…
 

M1(N,N) 

M1(1,1) 

M1(1,2) 

…
 

M1(1,N) 

M1(2,1) 

…
 

M1(N,N) 

R1 

R2 

…
 

Rn 

vector 

unit 

data from input tracks 

Matriplex 



Matriplex::CopyIn 

• Takes a single array as input and spreads it into fArray so that it 

occupies the n-th position in the Matriplex ordering (0 < n < N–1) 
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void CopyIn(idx_t n, T *arr) 

{ 

   for (idx_t i = n; i < kTotSize; i += N) 

   { 

      fArray[i] = *(arr++); 

   } 

} 

www.cac.cornell.edu 

Will it blend?  Will it vectorize? (Answer: no!) 



Redesign: Two-Step Initialization of Matriplex 

• Step 1: straight copies from memory 

• Step 2: equivalent to matrix transpose 
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M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) 
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M1(1,1) M1(1,1) … M1(1,1) 

M1(1,2) M1(1,2) … M1(1,2) 

…
 

…
 

…
 

M1(1,N) M1(1,N) … M1(1,N) 

M1(2,1) M1(2,1) … M1(2,1) 

…
 

…
 

…
 

M1(N,N) M1(N,N) … M1(N,N) 

R1 

R2 

…
 

Rn 

vector 

unit 

packed temp array, 

contiguous memory 

Matriplex 

? 

? 



What We Already Knew : CHEP 2015 Results 
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SlurpIn: Faster, One-Pass Initialization of Matriplex 

• Load into register: use “vector gather” intrinsic 

• Store from register: simple vector copy 
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How Well Does Matriplex Work Now? 

• After fixing Subtract and switching to SlurpIn, test runs 25% faster at 

full vector width, maximum speedup goes from ~4.4x to ~5.6x 

• Amdahl’s Law: can’t get full speedup until everything is vectorized 
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Non-Ideal, But Good Use of MIC for Track Fitting! 

• Fitting is vectorized with Matriplex and parallelized using OpenMP 

• Same simulated physics results as production code, but faster 

– Effective performance of vectorization is only about 40% utilization 

– Parallelization performance is close to ideal, in case of 1 thread/core 
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Track Building 

• Building is harder than fitting 

• After propagating a track candidate 

to the next layer, hits are searched 

for within a compatibility window 

• Track candidate needs to branch in 

case of multiple compatible hits 

– The algorithm needs to be robust 

against missing/outlier hits 

• Due to branching, track building is 

the most time consuming step in 

event reconstruction, by far  

– Design choices must aim to boost 

performance on the coprocessor 
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Strategy for Track Building 

• Keep the same goal of vectorizing and multithreading all operations 

– Vectorize by continuing to use Matriplex, just as in fitting 

– Multithread by binning tracks in eta (related to angle from axis) 

• Add two big complications 

– Hit selection: hit(s) on next layer must be selected from ~10k hits 

– Branching: track candidate must be cloned for >1 selected hit 

• Speed up hit selection by binning hits in both eta and phi (azimuth) 

– Faster lookup: compatible hits for a given track are found in a few bins 

• Limit branching by putting a cap on the number of candidate tracks 

– Sort the candidate tracks at the completion of each layer  

– Keep only the best candidates; discard excess above the cap 
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Eta Binning 

• Eta binning is natural for both track candidates and hits 

– Tracks don’t curve in eta 

• Form overlapping bins of hits, 2x wider than bins of track candidates 

– Track candidates never need to search beyond one extra-wide bin 

• Associate threads with distinct eta bins of track candidates 

– Assign 1 thread to j bins of track candidates, or vice versa (j can be 1) 

– Threads work entirely independently → task parallelism 
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Memory Access Problems 
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• Profiling showed the busiest functions were memory operations! 

• Cloning of candidates and loading of hits were major bottlenecks 

• This was alleviated by reducing sizes of Track by 20%, Hit by 40% 

– Track now references Hits by index, instead of carrying full copies 

 



Scaling Problems 

• Test parallelization by distributing threads across 21 eta bins 

– For nEtaBin/nThreads = j > 1, assign j eta bins to each thread 

– For nThreads/nEtaBin = j > 1, assign j threads to each eta bin 

• Observe poor scaling and saturation of speedup 
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Amdahl’s Law 

• Possible explanation: some fraction B of work is a serial bottleneck 

• If so, the minimum time for n threads is set by Amdahl’s Law 

 

T(n) = T(1) [(1−B)/n + B] 
parallelizable… not! 

 

• Note, asymptote as n →  is not zero, but T(1)B 

• Idea: plot the scaling data to see if it fits the above functional form 

– If it does, start looking for the source of B 

– Progressively exclude any code not in an OpenMP parallel section 

– Trivial-looking code may actually be a serial bottleneck… 
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Busted! 

• Huge improvement from excluding one code line creating eta bins 

EventOfCombCandidates event_of_comb_cands; 

// constructor triggers a new std::vector<EtaBinOfCandidates> 

• Accounts for 0.145s of serial time (0.155s)... scaling is still not ideal 
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What Else Is Going On? 

• VTune  reveals non-uniformity of occupancy within threads, i.e., 

some threads take far longer than others: load imbalance 

– Worsens as threads increase: test below uses 42 threads on MIC 

 

 

 

 

 

 

 

 

• Need dynamic reallocation of thread resources, e.g., task queues 
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Improvement with Intel Threading Building Blocks 

• TBB allows eta bins to be processed by varying numbers of threads 

• Allows idle threads to steal work from busy ones 

• Much better load balance 
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Scaling Tests 

• Benchmark for the building test 

is the average time to perform 

tracking for 10 events emitting 

20k charged particles each 

• TBB appears to be much 

better at keeping all the Xeon 

Phi cores busy 
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Track Building Test Actually Works, Too 

• Each simulated track should have hits in all 10 detector layers 

• On average, track builder finds 9.85 hits per track 
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Conclusions: Tracking R&D 

• Significant progress in creating 

parallelized and vectorized tracking 

software on Xeon/Xeon Phi 

– Good understanding of bottlenecks 

– Intel VTune has become a key tool 

– Started a port to GPUs (CUDA) 

• Better physics results, too 

– Transform momentum into curvature 

at each detector layer to get a better 

error estimate and find more tracks 

• Encouraging tests on realistic data 

• Still need to incorporate realistic 

geometry and materials 
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The project is solid and promising 

but we still have a long way to go 



Conclusions: HPC in the Many-Core Era 

• HPC has moved beyond giant clusters that rely on coarse-grained 

parallelism and MPI (Message Passing Interface) communication 

– Coarse-grained: big tasks are parceled out to a cluster 

– MPI: tasks pass messages to each other over a local network 

• HPC now also involves many-core engines that rely on fine-grained 

parallelism and SIMD within shared memory 

– Fine-grained: threads run numerous subtasks on low-power cores 

– SIMD: subtasks act upon multiple sets of operands simultaneously 

• Many-core is quickly becoming the norm in laptops, other devices 

• Programmers who want their code to run fast must consider how 

each big task breaks down into smaller parallel chunks 

– Multithreading must be enabled explicitly through OpenMP or an API 

– Compilers can vectorize loops automatically, if data are arranged well 
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