
Particle Track Reconstruction for the

Large Hadron Collider: Progress in

Many-Core Parallel Computing

Steve Lantz

Senior Research Associate

Cornell University Center for Advanced Computing (CAC)

steve.lantz@cornell.edu

www.cac.cornell.edu

SCAN Seminar, May 9, 2016

mailto:steve.lantz@cac.cornell.edu

Many-Core, not Manticore...

5/9/2015 www.cac.cornell.edu 2

Many-Core Computing in High Energy Physics

5/9/2015 www.cac.cornell.edu 3

Collaborators

K.McDermott,

D.Riley,

P.Wittich

 (Cornell);

G.Cerati,

M.Tadel,

S.Krutelyov,

F.Würthwein,

A.Yagil

 (UCSD);

P.Elmer,

M.Lefebvre

 (Princeton)

Photo: CMS detector,

LHC, CERN

LHC: The Super Collider!

5/9/2015 www.cac.cornell.edu 4

The Large Hadron Collider

smashes beams of protons

into each other, as they go

repeatedly around a ring

17 miles in circumference

at nearly the speed of light

Collision Energy Becomes Particle Masses: E=mc2

5/9/2015 www.cac.cornell.edu 5

Higgs Discovery @ LHC

5/9/2015 www.cac.cornell.edu 6

Big news on July 4, 2012!

Big Data Challenge

5/9/2015 www.cac.cornell.edu 7

• 40 million collisions a second

• Most are boring

– Dropped within 3 μs

• 0.5% are interesting

– Worthy of reconstruction...

• Higgs events: super rare

– 1016 collisions → 106 Higgs

– Maybe 1% of these are found

• Ultimate “needle in a haystack”

• “Big Data” since before it was

cool

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

CMS: Like a Fast Camera for Identifying Particles

5/9/2015 www.cac.cornell.edu 8

Particles interact differently, so CMS is a detector with different layers to

identify the decay remnants of Higgs bosons and other unstable particles

Simulation of pile-up = 140

at CMS in r-z plane r

z

CMS Is About to Get Busier

• By 2025, the instantaneous luminosity of the LHC will increase by a

factor of 2.5, transitioning to the High Luminosity LHC (HL-LHC)

• Significant increase in number of interactions per bunch crossing,

i.e., “pile-up”, on the order of 140–200 per event

5/9/2015 www.cac.cornell.edu 9

Reconstruction Will Soon Run Into Trouble

• Higher detector occupancy puts a

strain on read-out, selection, and

event reconstruction

• A slow step in reconstruction is

tracking – combining ~106 energy

deposits (“hits”) in the tracker to

form charged-particle trajectories

• Reconstruction time per event

diverges for high pile-up in CMS:

tracking is the biggest contributor

• Can no longer rely on Moore’s Law scaling of CPU frequency to

keep up with growth in reconstruction time – need a new solution

• Can we make the tracking algorithm concurrent to gain speed?

5/9/2015 www.cac.cornell.edu 10

Overview of CPU Speed and Complexity Trends

5/9/2015 www.cac.cornell.edu 11

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

discontinuity in ~2004

How TACC Stampede Reached ~10 Petaflop/s

• 2+ petaflop/s of Intel Xeon E5

• 7+ additional petaflop/s of Intel

Xeon Phi™ SE10P coprocessors

• Follows the hardware trend of the

last 10 years: processors gain

cores (execution engines) rather

than clock speed

• So is Moore’s Law dead? No!

– Transistor densities are still doubling every 2 years

– Clock rates have stalled at < 4 GHz due to power consumption

– Only way to increase flop/s/watt is through greater on-die parallelism

• Architectures are therefore moving from multi-core to many-core

5/9/2015 www.cac.cornell.edu 12

Photo by TACC, June 2012

Xeon Phi: What Is It?

• An x86-derived CPU featuring a large number of simplified cores

– Many Integrated Core (MIC) architecture

• An HPC platform geared for high floating-point throughput

– Optimized for floating-point operations per second (flop/s)

• Intel’s answer to general purpose GPU (GPGPU) computing

– Similar flop/s/watt to GPU-based products like NVIDIA Tesla

• Just another target for the compiler; no need for a special API

– Compiled code is not (yet) binary compatible with x86_64

• Initially, a full system on a PCIe card (separate Linux OS, RAM)...

• KNL: with “Knight’s Landing”, Xeon Phi can be the main CPU

www.cac.cornell.edu 13 5/9/2015

Many-Core Elements in Petaflop/s Machines

• CPUs: Wider vector units, more cores

– AVX instructions crunch 8 or 16 floats at a time

– Single thread runs well; dozens are needed

– Stampede example: peak DP, dual Xeon E5-2680 - 0.34 Tflop/s, 260W

• GPUs: 1000s of simple stream processors

– Single Instruction, Multiple Thread (SIMT): think vector units, not cores

– Special APIs are required: CUDA, OpenCL, OpenACC

– Stampede example: peak DP, NVIDIA Tesla K20 - 1.17 Tflop/s, 225W

• MICs: 60+ CPU cores, floating-point efficiency

– Slow clock, yet high flop/s from more/wider vectors, more cores

– Intel compiler handles vectorization and multithreading of OpenMP code

– Stampede example: peak DP, Xeon Phi SE10P - 1.06 Tflops/s, 300W

– Next generation “Knight’s Landing” (KNL): ~3 Tflop/s, ~300W

5/9/2015 www.cac.cornell.edu 14

Xeon Phi vs. Xeon

Number of cores

Clock speed (GHz)

SIMD width (bits)

DP Gflop/s/core

HW threads/core

• Xeon designed for all workloads, high single-thread performance

• Xeon Phi also general purpose, but optimized for number crunching

– High aggregate throughput via lots of weaker threads, more SIMD

– Possible to achieve >2x performance compared to dual E5 CPUs

SE10P Xeon E5 Xeon Phi is…

61 8 much higher

1.01 2.7 lower

512 256 higher

16+ 21+ lower

4 1* higher

www.cac.cornell.edu 15 5/9/2015

Where CPU Technology Is Headed Next: KNL

• 72 cores, 2 VPUs/core, new RAM layer (fast memory or slow cache)

5/9/2015 www.cac.cornell.edu 16

Two Types of MIC (and CPU) Parallelism

• Threading (task parallelism)

– OpenMP, Cilk Plus, TBB, Pthreads, etc.

– It’s all about sharing work and scheduling

• Vectorization (data parallelism)

– “Lock step” Instruction Level Parallelization (SIMD)

– Requires management of synchronized instruction execution

– It’s all about finding simultaneous operations

• To utilize MIC fully, both types of parallelism need to be identified

and exploited

– Need 2–4+ threads to keep a MIC core busy (in-order execution stalls)

– Vectorized loops gain 8x or 16x performance on MIC!

– Important for CPUs as well: gain of 4x or 8x on Sandy Bridge

5/9/2015 www.cac.cornell.edu 17

Parallelism and Performance on Xeon Phi vs. Xeon

5/9/2015 www.cac.cornell.edu 18

Courtesy James Reinders, Intel

What Does the Tracking Algorithm Do?

• Goal is to reconstruct the trajectory (track) of each charged particle

• Solenoidal B field bends the trajectory in one plane (“transverse”)

• Trajectory is a helix described by 5 parameters, pT, η, φ, z0, d0

• We are most interested in high-momentum (high-pT) tracks

• Trajectory may change due to interaction with materials

• Ultimately we care mainly about:

– Initial track parameters

– Exit position to the calorimeters

• We use a Kalman Filter-based technique

5/9/2015 www.cac.cornell.edu 19

Why Kalman Filter for Particle Tracking?

• Naively, the particle’s trajectory

is described by a single helix

• Forget it

– Non-uniform B field

– Scattering

– Energy loss

– ...

• Trajectory is only locally helical

• Kalman Filter allows us to take

these effects into account, while

preserving a locally smooth

trajectory

5/9/2015 www.cac.cornell.edu 20

science

fiction...

..vs. real

materials

Kalman Filter

• Method for obtaining best

estimate of the five track

parameters

• Natural way of including

interactions in the material

(process noise) and hit position

uncertainty (measurement error)

• Used both in pattern recognition

(i.e., determining which hits to

group together as coming from

one particle) and in fitting (i.e.,

determining the ultimate track

parameters)

5/9/2015 www.cac.cornell.edu 21

R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html

doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html

Kalman Example

5/9/2015 www.cac.cornell.edu 22

Kalman procedure runs this way

Final fit applies to whole dataset

• Use Kalman

procedure to

estimate slope

and y-intercept

of a straight-line

fit to noisy data

• Parameter

values improve

as data points

are added

• 30-line script in

MATLAB

Tracking as Kalman Filter

5/9/2015 www.cac.cornell.edu 23

• Track reconstruction has 3 main steps: seeding, building, and fitting

• Building and fitting repeat the basic logic unit of the Kalman Filter...

– From current track state

(parameters and

uncertainties), track is

propagated to next layer

– Using hit measurement

information, track state is

updated (filtered)

– Procedure is repeated

until last layer is reached

Track Fitting as Kalman Filter

• The track fit consists of the simple

repetition of the basic logic unit for

hits that are already determined to

belong to the same track

• Divided into two stages

– Forward fit: best estimate at collision

point

– Backward smoothing: best estimate

at face of calorimeter

• Computationally, the Kalman Filter is

a sequence of matrix operations with

small matrices (dimension 6 or less)

• But, many tracks can be fit in parallel

5/9/2015 www.cac.cornell.edu 24

“Matriplex” Structure for Kalman Filter Operations

• Each individual matrix is small: 3x3 or 6x6, and may be symmetric

• Store in “matrix-major” order so 16 matrices work in sync (SIMD)

• Potential for 60 vector units on MIC to work on 960 tracks at once!

5/9/2015 www.cac.cornell.edu 25

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M1+2n(1,1)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2 (1,N) Mn+2 (2,1) … , … Mn+2(N,N)

…

…

…

…

…

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(0,0) M2n(0,1) … M2n(0,N) M2n(1,0) … M2n(N,N) M3n(0,0)

Matrix size NxN, vector unit size n = 16 for MIC → data parallelism

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

R1

R2

…

Rn

vector

unit

How Well Does Matriplex Work?

• Fit benchmark: average of 10 events, 106 tracks each, single thread

• Width of Matriplexes varies from 1 (quasi-unvectorized) to 16 (full)

• Maximum speedup is only ~4.4x. What’s wrong?

5/9/2015 www.cac.cornell.edu 26

Clues From Intel’s VTune

5/9/2015 www.cac.cornell.edu 27

• Spending lots of time in routines that are unvectorized (or nearly so)

• Ideal vectorization intensity should be 16

• Subtract and CopyIn appear to be the top offenders

More Clues From Optimization Reports

• Intel compilers have an option to generate vectorization reports

• One report showed a problem in a calling routine...

• OK! – so outErr is both input and output. But we know that is totally

safe, because Subtract just runs element-wise through the arrays

• Compiler must often make conservative assumptions by default

5/9/2015 www.cac.cornell.edu 28

outErr.Subtract(propErr, outErr);

remark #15344: loop was not vectorized: vector dependence
prevents vectorization. First dependence is shown below...

remark #15346: vector dependence: assumed FLOW dependence
between outErr line 183 and outErr line 183

Fixing the False Vector Dependence

• Just add a pragma to ignore vector dependence

• Single change gives ~10% performance gain! (at full vector width)

5/9/2015 www.cac.cornell.edu 29

MatriplexSym& Subtract(const MatriplexSym& a,

 const MatriplexSym& b)

{

#pragma ivdep

 for (idx_t i = 0; i < kTotSize; ++i)

 {

 fArray[i] = a.fArray[i] - b.fArray[i];

 }

}

CopyIn: Initialization of Matriplex from Track Data

• Load into register: simple vector copy

• Store from register: messy stride-N write?

5/9/2015 www.cac.cornell.edu 30

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

R1

R2

…

Rn

vector

unit

data from input tracks

Matriplex

Matriplex::CopyIn

• Takes a single array as input and spreads it into fArray so that it

occupies the n-th position in the Matriplex ordering (0 < n < N–1)

5/9/2015 31

void CopyIn(idx_t n, T *arr)

{

 for (idx_t i = n; i < kTotSize; i += N)

 {

 fArray[i] = *(arr++);

 }

}

www.cac.cornell.edu

Will it blend? Will it vectorize? (Answer: no!)

Redesign: Two-Step Initialization of Matriplex

• Step 1: straight copies from memory

• Step 2: equivalent to matrix transpose

5/9/2015 www.cac.cornell.edu 32

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

M1(1,1) M1(1,1) … M1(1,1)

M1(1,2) M1(1,2) … M1(1,2)

…

…

…

M1(1,N) M1(1,N) … M1(1,N)

M1(2,1) M1(2,1) … M1(2,1)

…

…

…

M1(N,N) M1(N,N) … M1(N,N)

R1

R2

…

Rn

vector

unit

packed temp array,

contiguous memory

Matriplex

?

?

What We Already Knew : CHEP 2015 Results

5/9/2015 www.cac.cornell.edu 33

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

Si
n

gl
le

-t
h

re
ad

ed
 t

im
e,

 s
ec

.

Data input method #

Comparison of input methods for fitting 1M tracks using Matriplex

input

fit

2-step

original

2-step MKL

BEST:

2-step +

vgather

2-step +

vscatter original +

vscatter

intrinsics

SlurpIn: Faster, One-Pass Initialization of Matriplex

• Load into register: use “vector gather” intrinsic

• Store from register: simple vector copy

5/9/2015 www.cac.cornell.edu 34

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

R1

R2

…

Rn

vector

unit

data from input tracks

Matriplex

How Well Does Matriplex Work Now?

• After fixing Subtract and switching to SlurpIn, test runs 25% faster at

full vector width, maximum speedup goes from ~4.4x to ~5.6x

• Amdahl’s Law: can’t get full speedup until everything is vectorized

5/9/2015 www.cac.cornell.edu 35

Non-Ideal, But Good Use of MIC for Track Fitting!

• Fitting is vectorized with Matriplex and parallelized using OpenMP

• Same simulated physics results as production code, but faster

– Effective performance of vectorization is only about 40% utilization

– Parallelization performance is close to ideal, in case of 1 thread/core

5/9/2015 www.cac.cornell.edu 36

Track Building

• Building is harder than fitting

• After propagating a track candidate

to the next layer, hits are searched

for within a compatibility window

• Track candidate needs to branch in

case of multiple compatible hits

– The algorithm needs to be robust

against missing/outlier hits

• Due to branching, track building is

the most time consuming step in

event reconstruction, by far

– Design choices must aim to boost

performance on the coprocessor

5/9/2015 www.cac.cornell.edu 37

Strategy for Track Building

• Keep the same goal of vectorizing and multithreading all operations

– Vectorize by continuing to use Matriplex, just as in fitting

– Multithread by binning tracks in eta (related to angle from axis)

• Add two big complications

– Hit selection: hit(s) on next layer must be selected from ~10k hits

– Branching: track candidate must be cloned for >1 selected hit

• Speed up hit selection by binning hits in both eta and phi (azimuth)

– Faster lookup: compatible hits for a given track are found in a few bins

• Limit branching by putting a cap on the number of candidate tracks

– Sort the candidate tracks at the completion of each layer

– Keep only the best candidates; discard excess above the cap

5/9/2015 www.cac.cornell.edu 38

Eta Binning

• Eta binning is natural for both track candidates and hits

– Tracks don’t curve in eta

• Form overlapping bins of hits, 2x wider than bins of track candidates

– Track candidates never need to search beyond one extra-wide bin

• Associate threads with distinct eta bins of track candidates

– Assign 1 thread to j bins of track candidates, or vice versa (j can be 1)

– Threads work entirely independently → task parallelism

5/9/2015 www.cac.cornell.edu 39

Memory Access Problems

5/9/2015 www.cac.cornell.edu 40

• Profiling showed the busiest functions were memory operations!

• Cloning of candidates and loading of hits were major bottlenecks

• This was alleviated by reducing sizes of Track by 20%, Hit by 40%

– Track now references Hits by index, instead of carrying full copies

Scaling Problems

• Test parallelization by distributing threads across 21 eta bins

– For nEtaBin/nThreads = j > 1, assign j eta bins to each thread

– For nThreads/nEtaBin = j > 1, assign j threads to each eta bin

• Observe poor scaling and saturation of speedup

5/9/2015 www.cac.cornell.edu 41

Amdahl’s Law

• Possible explanation: some fraction B of work is a serial bottleneck

• If so, the minimum time for n threads is set by Amdahl’s Law

T(n) = T(1) [(1−B)/n + B]
parallelizable… not!

• Note, asymptote as n →  is not zero, but T(1)B

• Idea: plot the scaling data to see if it fits the above functional form

– If it does, start looking for the source of B

– Progressively exclude any code not in an OpenMP parallel section

– Trivial-looking code may actually be a serial bottleneck…

5/9/2015 www.cac.cornell.edu 42

Busted!

• Huge improvement from excluding one code line creating eta bins

EventOfCombCandidates event_of_comb_cands;

// constructor triggers a new std::vector<EtaBinOfCandidates>

• Accounts for 0.145s of serial time (0.155s)... scaling is still not ideal

5/9/2015 www.cac.cornell.edu 43

What Else Is Going On?

• VTune reveals non-uniformity of occupancy within threads, i.e.,

some threads take far longer than others: load imbalance

– Worsens as threads increase: test below uses 42 threads on MIC

• Need dynamic reallocation of thread resources, e.g., task queues

5/9/2015 www.cac.cornell.edu 44

Improvement with Intel Threading Building Blocks

• TBB allows eta bins to be processed by varying numbers of threads

• Allows idle threads to steal work from busy ones

• Much better load balance

5/9/2015 www.cac.cornell.edu 45

Scaling Tests

• Benchmark for the building test

is the average time to perform

tracking for 10 events emitting

20k charged particles each

• TBB appears to be much

better at keeping all the Xeon

Phi cores busy

5/9/2015 www.cac.cornell.edu 46

Track Building Test Actually Works, Too

• Each simulated track should have hits in all 10 detector layers

• On average, track builder finds 9.85 hits per track

5/9/2015 www.cac.cornell.edu 47

Conclusions: Tracking R&D

• Significant progress in creating

parallelized and vectorized tracking

software on Xeon/Xeon Phi

– Good understanding of bottlenecks

– Intel VTune has become a key tool

– Started a port to GPUs (CUDA)

• Better physics results, too

– Transform momentum into curvature

at each detector layer to get a better

error estimate and find more tracks

• Encouraging tests on realistic data

• Still need to incorporate realistic

geometry and materials

5/9/2015 www.cac.cornell.edu 48

The project is solid and promising

but we still have a long way to go

Conclusions: HPC in the Many-Core Era

• HPC has moved beyond giant clusters that rely on coarse-grained

parallelism and MPI (Message Passing Interface) communication

– Coarse-grained: big tasks are parceled out to a cluster

– MPI: tasks pass messages to each other over a local network

• HPC now also involves many-core engines that rely on fine-grained

parallelism and SIMD within shared memory

– Fine-grained: threads run numerous subtasks on low-power cores

– SIMD: subtasks act upon multiple sets of operands simultaneously

• Many-core is quickly becoming the norm in laptops, other devices

• Programmers who want their code to run fast must consider how

each big task breaks down into smaller parallel chunks

– Multithreading must be enabled explicitly through OpenMP or an API

– Compilers can vectorize loops automatically, if data are arranged well

5/9/2015 www.cac.cornell.edu 49

