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LHC: The Super Collider!

v@, T“"‘H

The Large Hadron Collider
smashes beams of protons
Into each other, as they go
repeatedly around a ring
17 miles in circumference
_,g » at nearly the speed of light
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Physicists are set to announce the latest results from the Large
Hadron Collider (LHC), but what exactly is the Higgs boson, why
do people call it the 'god particle' and what would its discovery

FOX mean for physics?

. .
I g g S D I S C O V e ry @ L C . Fair & Balanced lan Sample and James Randerson
guardian.co.uk, Friday 29 June 2012 09.35 EDT
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Big news on July 4, 2012!
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) The elusive particle:
Sclahce Higgs Boson

WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION = ARTS

tn

ENVIRONMENT SPACE & COSMOS

cle Seen as Key to Universe

] e

Physicists Find Elusive Parti
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Physicists declare victory in Higgs hunt

Researchers must now pin down the precise identity of their new particle.

Scientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson

By DENNIS OVERBYE
Published: July 4, 2012 | i@ 122 Comments

ASPEN, Colo. — Signaling a likely end to one of the longest, most FACEBOOK SeatBniniel
e 04 July 2012

expensive searches in the history of science, physicists said ¥ TWITTER i
Physicists announced today that they have seen a
clear signal of a Higgs boson — a key part of the

5/9/20 15 WWW.Ccac.C mechanism that gives all particles their masses.

Two independent experiments reported their
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B | g Data Ch al I en g e proton - (anti)proton cross sections

10° ¢ ———rrr ——————— 10

40 million collisions a second

10’ ' Tevatron LHC' ‘ 10’

« Most are boring 10 £ | =
— Dropped within 3 us v ' |1 e
0 . . i | —~73" 5
* 0.5% are interesting w b 7 Jwes
— Worthy of reconstruction... SE S ?// "’E
 Higgs events: superrare —— - "“F | 1" s
o - 0 10° - ]e(E“>100GeV) ?100 o
— 1016 collisions — 10° Higgs i b > 1 8
— Maybe 1% of these are found 10° L /// {1t 2
10° £ : / 3 10° %
> 40 5 : SR PP
« Ultimate “needle in a haystack” o hm meev{ ' 1 i 1
« “Big Data” since before it was wE o g
cool L I TR

E (TeV)
http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html
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Key:
Muan
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

\ Electromagnetic
}l]l Calorimeter

Hadran Superconducting
Calorimeter Sclencid

Iron return yoke intersparsed
Transverse slice with Muon chambers
through CM3

D Berrnay, CERN, Febricnry 2004

Particles interact differently, so CMS is a detector with different layers to
identify the decay remnants of Higgs bosons and other unstable particles
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CMS Is About to Get Busie
r N

« By 2025, the instantaneous luminosity of the LHC will increase by a
factor of 2.5, transitioning to the High Luminosity LHC (HL-LHC)

« Significant increase in number of interactions per bunch crossing,
i.e., “pile-up”, on the order of 140-200 per event

5/9/2015 www.cac.cornell.edu 9
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Reconstruction Will Soon Run Into Trouble

[ CMS Simulation, ¥s = 13 TeV, it + PU, BX=25ns

« Higher detector occupancy puts a
strain on read-out, selection, and
event reconstruction

* A slow step in reconstruction is 40
tracking — combining ~10° energy 30"
deposits (“hits”) in the tracker to
form charged-particle trajectories

* Reconstruction time per event
diverges for high pile-up in CMS: G —
tracking is the biggest contributor Luminosity [10°* e s

« Can no longer rely on Moore’s Law scaling of CPU frequency to
keep up with growth in reconstruction time — need a new solution

« Can we make the tracking algorithm concurrent to gain speed?

60— —a— Full Reco —e— Track Reco

PU140

Time/Event [a.u.]

50—

5/9/2015 www.cac.cornell.edu 10
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Overview of CPU Speed and Complexity Trends

10,000,000 -
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100,000 o | =PowerTwn( o K & o
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: - =
100 ~atrym AL —in
] m "=
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- ) 7 o
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Year of Introduction
Committee on Sustaining Growth in Computing Performance, National Research Council.
"What Is Computer Performance?"
In The Future of Computing Performance: Game Over or Next Level?
Washington, DC: The National Academies Press, 2011.
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How TACC Stampede Reached ~10 Petaflop/s

« 2+ petaflop/s of Intel Xeon E5

e 7+ additional petaflop/s of Intel
Xeon Phi™ SE10P coprocessors

* Follows the hardware trend of the
last 10 years: processors gain
cores (execution engines) rather
than clock speed

* Sois Moore’s Law dead? No!

— Transistor densities are still doubling every 2 years
— Clock rates have stalled at < 4 GHz due to power consumption
— Only way to increase flop/s/watt is through greater on-die parallelism

Architectures are therefore moving from multi-core to

Photo by TACC, June 2012

5/9/2015 www.cac.cornell.edu 12
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« An x86-derived CPU featuring a large number of simplified cores
— Many Integrated Core (MIC) architecture
 An HPC platform geared for high floating-point throughput
— Optimized for floating-point operations per second (flop/s)
* Intel’s answer to general purpose GPU (GPGPU) computing
— Similar flop/s/watt to GPU-based products like NVIDIA Tesla
« Just another target for the compiler; no need for a special API
— Compiled code is not (yet) binary compatible with x86_64
« [Initially, a full system on a PCle card (separate Linux OS, RAM)...
« KNL: with “Knight’s Landing”, Xeon Phi can be the main CPU

5/9/2015 www.cac.cornell.edu 13
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Many-Core Elements in Petaflop/s Machines

« CPUs: Wider vector units, more cores
— AVX instructions crunch 8 or 16 floats at a time
— Single thread runs well; dozens are needed :
— Stampede example: peak DP, dual Xeon E5-2680 - 0.34 Tflop/s 260W

« GPUs: 1000s of simple stream processors
— Single Instruction, Multiple Thread (SIMT): think vector units, not cores
— Special APIs are required: CUDA, OpenCL, OpenACC
— Stampede example: peak DP, NVIDIA Tesla K20 - 1.17 Tflop/s, 225W

« MICs: 60+ CPU cores, floating-point efficiency
— Slow clock, yet high flop/s from more/wider vectors, more cores
— Intel compiler handles vectorization and multithreading of OpenMP code
— Stampede example: peak DP, Xeon Phi SE10P - 1.06 Tflops/s, 300W
— Next generation “Knight’s Landing” (KNL): ~3 Tflop/s, ~300W

Xeon €5-2600 Xeon €5-2600
.

5/9/2015 www.cac.cornell.edu 14
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Xeon Phi vs. Xeon

SE10P Xeon ES Xeon Phi is...
Number of cores 61 8 much higher
Clock speed (GHz) 1.01 2.7 lower
SIMD width (bits) 512 256 higher
DP Gflop/s/core 16+ 21+ lower
HW threads/core 4 1* higher

« Xeon designed for all workloads, high single-thread performance

« Xeon Phi also general purpose, but optimized for number crunching
— High aggregate throughput via lots of weaker threads, more SIMD
— Possible to achieve >2x performance compared to dual E5 CPUs

5/9/2015 www.cac.cornell.edu 15
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Where CPU Technology Is Headed Next: KNL

- 72 cores, 2 VPUs/core, new RAM layer (fast memory or slow cache)

KNL Overview

S 2 VPU

iMB

L2 Core
- 2x16 X4 TN
m' m‘ 1x4 = DM wmcoram  mcomam \ Chip: 36 Tiles interconnected by 2D Mesh
S e e S | Tile: 2 Cores + 2 VPU/core + 1 MB L2

pcle ° [oe e

Gen 3

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384 GB

10: 36 lanes PCle* Gen3, 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Intel® Omni-Path Architecture on-package (not shown)

MCDRAM

Vector Peak Perf: 3+TF DP and 6+TF SP Flops | 0.¢ (17,200
Scalar Perf: ~3x over Knights Corner than DDR
‘Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

’

connectad by
2D Mesh

Intercannect

“rmEFrsIn szO0 -
WEMEZI>IN AT 00 e
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Two Types of MIC (and CPU) Parallelism

» Threading (task parallelism)
— OpenMP, Cilk Plus, TBB, Pthreads, etc.
— It's all about sharing work and scheduling
- Vectorization (data parallelism)
— “Lock step” Instruction Level Parallelization (SIMD)
— Requires management of synchronized instruction execution
— It's all about finding simultaneous operations

« To utilize MIC fully, both types of parallelism need to be identified
and exploited

— Need 2-4+ threads to keep a MIC core busy (in-order execution stalls)
— Vectorized loops gain 8x or 16x performance on MIC!
— Important for CPUs as well: gain of 4x or 8x on Sandy Bridge

5/9/2015 www.cac.cornell.edu 17
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‘ —

- Scalar & single-thread ..,

More
parallel

Vector & single-thread [

Scalar & multithreaded [*=———————————

_ Vector & multithreaded [#5=5=

1 10 100 1000 10,000

performance
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What Does the Tracking Algorithm Do?

« Goal is to reconstruct the trajectory (track) of each charged particle
« Solenoidal B field bends the trajectory in one plane (“transverse”)

« Trajectory is a helix described by 5 parameters, p-, 1, @, Z,, d,

* We are most interested in high-momentum (high-p;) tracks

« Trajectory may change due to interaction with materials

« Ultimately we care mainly about:
— Initial track parameters
— Exit position to the calorimeters

Actual Trajectory

. . O
 We use a Kalman Filter-based technique
/o
=
S
7Beampipe

5/9/2015 www.cac.cornell.edu 19



Cornell University

Center for Advanced Computing

Naively, the particle’s trajectory
Is described by a single helix

science « Forget it

fiction... — Non-uniform B field
— Scattering
— Energy loss

« Trajectory is only locally helical

« Kalman Filter allows us to take
these effects into account, while
preserving a locally smooth
trajectory

..VS. real
materials

5/9/2015 ) www.cac.cornell.edu 20
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Kalman Filter Aircraft

« Method for obtaining best \R&
estimate of the five track 2?

Noisy Estimated
param eters Measurements | Kalman Position
. : S e Y| Filter 4
« Natural way of including
Interactions in the material
(process noise) and hit position Kalman filter
u n Ce rtal nty (measu re me nt e rro r) From Wikipedia, the free encyclopedia
* Used both in pattern recognition o et earements ssoom v
(l e y d@termlnlng Wthh hltS tO time, containing noise (random variations) and other inaccuracies,

. and produces estimates of unknown variables that tend to be more
grou p together aS Coml ng from precise than those based on a single measurement alone. More
one par'“Cle) and N f|tt| ng (| e. . formally, the Kalman filter operates recursively on streams of noisy

.. . input data to produce a statistically optimal estimate of the underlyin
determlnlng the UItImate traCk sypstem state.pThe filter is named :fteF: Rudolf (Rudy) E. Kalméan, ::neg
param ete rS) of the primary developers of its theory.

R. Frihwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html

5/9/2015 www.cac.cornell.edu 21
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Kalman Example

« Use Kalman 2r
procedure to <— Kalman procedure runs this way
estimate slope 10

and y-intercept
of a straight-line
fit to noisy data

o

 Parameter 5
values improve
as data points 4
are added
e 30-line script in 21
MATLAB Final fit applies to whole dataset —

0 ! \ ! ! ! ! ! !
0 05 1 1.5 2 2.5 3 3.5 4
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Tracking as Kalman Filter

« Track reconstruction has 3 main steps: seeding, building, and fitting
« Building and fitting repeat the basic logic unit of the Kalman Filter...

updated state
after N

o8& —.

Nth measurement ——— IMN

=Fn-1-XN"In-1

£

propagationto N ————

updated state N-1
after N-1 X" N-1

S

5/9/2015 www.cac.cornell.edu

——— XNy=xN-1y+Kn*(mn-Hn:xN-1N)

— From current track state
(parameters and
uncertainties), track is
propagated to next layer

— Using hit measurement
information, track state is
updated (filtered)

— Procedure is repeated
until last layer is reached

23
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Track Fitting as Kalman Filter

* The track fit consists of the simple
repetition of the basic logic unit for G @

hits that are already determined to
belong to the same track

. Divided into two stages @ @
— Forward fit: best estimate at collision
point .
— Backward smoothing: best estimate
at face of calorimeter
« Computationally, the Kalman Filter is O
a sequence of matrix operations with @ @
small matrices (dimension 6 or less)

* But, many tracks can be fit in parallel

5/9/2015 www.cac.cornell.edu 24
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“Matriplex” Structure for Kalman Filter Operations

Each individual matrix is small: 3x3 or 6x6, and may be symmetric
Store in “matrix-major” order so 16 matrices work in sync (SIMD)
Potential for 60 vector units on MIC to work on 960 tracks at once!

RI -l M1 | M'(1,2) MAN | My | MmNy e | M n2) M N) [ Mty | M NNy | M
<
R2 - -% M1, | M(1,2) M(ILN) | M2 | | MAINNY
%
&z
o
(S
v
@& |;
b
=
Rn -I ML) | MeaL2) M(ILN) | M@ M(N,N) M31(0,0)
vector
unit Matrix size NxN, vector unit size n = 16 for MIC — data parallelism

5/9/2015 www.cac.cornell.edu 25
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How Well Does Matriplex Work?

Vectorization benchmark on Xeon Phi
100

90
80
70
60
50 =
40
30

20

Vector Width

Vectorization speedup on Xeon Phi

Vector Width

Fit benchmark: average of 10 events, 10° tracks each, single thread
Width of Matriplexes varies from 1 (quasi-unvectorized) to 16 (full)
Maximum speedup is only ~4.4x. What’s wrong?

5/9/2015 www.cac.cornell.edu 26



Cornell University
Center for Advanced Computing

Clues From Intel’s VTune

# General Exploration General Exploration viewpoint (change) @

B8 Collection Log | | € Analysis Target| | © Analysis Type| | B Summary | E-R:suelugilg % Top-down Tree | | B Tasks and Frames

Grouping: | Function / Call Stack

. ¥ Instructions | CPI | Start Vectorization Usage

N Clockticks Retired | Rate | Address | vectorization Intensity ‘ L1 C| L2 ...
I helixAtRFromiterative 5,320,000,000 2,240,000, ... 2.375 0x4376b0 9.826 25.393
P Matriplex::MatriplexSym<float, (int)6, (int)16>::Subtract 1,330,000,000 630,000,000 2.111 0x40e24a 0.889 0.964
P intel_Irb_memcpy 840,000,000 420,000,000 1.714 0x48ac40 6.000 7.500
P Matriplex::MatriplexSym<float, (int)3, (int)16=>::Copyln 700,000,000 630,000,000 1.111 0x423b46 0.000 0.000 0.000
P updateParametersMPlex 630,000,000/ 450,000,000/ 1.286| 0x40d550 10.000 5.882
I {anonymous namespace):MultHelixProp 630,000,000 350,000,000| 1.800| 0x43ded0 7.000 14.737
I Matriplex::Matriplex<float, {int)3, (int)1, {int)16>::Copyln 560,000,000/ 140,000,000 4.000 0x423b4c 0.000 0.000 0.000
P {anonymous namespace)::PolarErr 560,000,000 0 0x40f720 6.500 21.667
P MkFitter:InputTracksAndHits 490,000,000 140,000,000| 3.500| 0x423830 0.000 0.000 0.000
P Matriplex:MatriplexSym<float, (int)8, (int)16=>::Copyin 420,000,000| 490,000,000| 0.857|0x4238db 0.000 0.000 0.000
b MkFitter:FitTracks 420.000.000 70.000.000 6.000 0x424c7D 6.667

« Spending lots of time in routines that are unvectorized (or nearly so)
» |deal vectorization intensity should be 16
« Subtract and Copyln appear to be the top offenders

5/9/2015 www.cac.cornell.edu 27
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More Clues From Optimization Reports

* Intel compilers have an option to generate vectorization reports
* One report showed a problem in a calling routine...

remark #15344: loop was not vectorized: vector dependence
prevents vectorization. First dependence is shown below...

remark #15346: vector dependence: assumed FLOW dependence
between outErr line 183 and outErr line 183

/ AN

12 X

outErr.Subtract(propErr, outErr);

« OK! —so outErr is both input and output. But we know that is totally
safe, because Subtract just runs element-wise through the arrays

« Compiler must often make conservative assumptions by default

5/9/2015 www.cac.cornell.edu 28
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Fixing the False Vector Dependence

« Just add a pragma to ignore vector dependence
« Single change gives ~10% performance gain! (at full vector width)

MatriplexSym& Subtract(const MatriplexSym& a,
const MatriplexSym& b)

{
#pragma ivdep
for (idx t 1 = @; i < kTotSize; ++i)
{
fArray[i] = a.fArray[i] - b.fArray[i];

5/9/2015 www.cac.cornell.edu 29
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Copyln: Initialization of Matriplex from Track Data

. . . M!(1,1)
* Load into register: simple vector copy
. . . . MI(1,1) . T
« Store from register: messy stride-N write? M(12) "M.(H)
MI(1,2) N
MI(1,2)
l ML) | M(1,2) MI(LN) | M@ | .., | MI(NN) RI : MILN)
c
-8 ML) | M2(1,2) M2(I,N) | M2(2,1) ey | MYNN) R2 M'(1,N) MG
o ' MI(1,N)
£
2 M'(2,1)
o
(S M'(2,1)
(]
(S — /]
3
I ML | Me1,2) M(LN) | M@, 1) Mn(N,N) Rn MINN)
Matnplex vector M'(N,N)
unit MI(N,N)

data from input tracks
5/9/2015 www.cac.cornell.edu 30
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Matriplex::Copyln

« Takes a single array as input and spreads it into fArray so that it
occupies the n-th position in the Matriplex ordering (0 <n < N-1)

void CopyIn(idx_t n, T *arr)
{
for (idx_t 1 = n; i < kTotSize; i += N)
{
fArray[i] = *(arr++);
}
}

WilHtblenrd? Will it vectorize? (Answer: no!)

5/9/2015 www.cac.cornell.edu 31
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Redesign: Two-Step Initialization of Matriplex

« Step 1: straight copies from memory

« Step 2: equivalent to matrix transpose MDD e D
/ MI(1,2) | M!(1,2) M'(1,2)
l ML) | M(1,2) MNY | M@y | | MI(INN) RI
E T~
5 ML) | M2(12) M(I,N) | M) | ., | MANN) R2
(O]
© MI(LN) | MIN) M!(1,N)
gl «— <« «—
é M'@2,1) | M'@2I) M!(2,1)
2
T —
I ML | Me1,2) M(LN) | M@, 1) M"(N,N) Rn \
?
Matriplex vector o
unit . MI(N,N) | MI(N,N) MI(N,N)

packed temp array,

contiguous memory
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What We Already Knew : CHEP 2015 Results

Comparison of input methods for fitting 1M tracks using Matriplex

5/9/2015

intrinsics
2-step + T
BEST vscatter original +
vscatter

Singlle-threaded time, sec.

Data mput method #

www.cac.cornell.edu

2-step MKL

7
3 original

2-step 2-step +
; vgather
4
3
2
1
0 T T

1

M input
= fit
5 6
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Slurpln: Faster, One-Pass Initialization of Matriplex

. . « v . . MI(1,1)
« Load into register: use “vector gather” intrinsic L/
« Store from register: simple vector copy <& /</> wan |
é'\ M'(1,2) ) /
N\ . A |
MI(1,1) \M'(I,Z) MAN) | M@ | ., ] MU(NN) P RI : /4(|,N)
é M2(1,1) \MZ(I,Z) MAILN) | M2 |, | MANGN) & R2 M'(y/ MG
2 ' M!(I.N)
: 4(2,0
(S M'(2,1)
|
M"(I,I)// Mn(1,2) M(LN) | M@, 1) Mn(N,N) < Rn MIONN)
N4
Matriplex vector M!(N,N)
unit MI(N,N)

data from input tracks
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How Well Does Matriplex Work Now?

Vectorization benchmark on Xeon Phi Vectorization speedup on Xeon Phi
100

Time for 1M tracks [s]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1
2 4 6 8 10 12 14
Vector Width Vector Width

1 |
16

« After fixing Subtract and switching to Slurpin, test runs 25% faster at
full vector width, maximum speedup goes from ~4.4x to ~5.6x

 Amdahl’'s Law: can’t get full speedup until everything is vectorized

5/9/2015 www.cac.cornell.edu 35
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Non-ldeal, But Good Use of MIC for Track Fitting!

Vectorization speedup on Xeon Phi Parallelization speedup on Xeon Phi

Speedup

oLt L1 L1 L1 I T — N — e 0 v b b b b b b b e Iy
g 0 20 40 60 80 100 120 140 G0 Tou 200

] 0
Vector Width Number of Threads

« Fitting Is vectorized with Matriplex and parallelized using OpenMP

« Same simulated physics results as production code, but faster
— Effective performance of vectorization is only about 40% utilization
— Parallelization performance is close to ideal, in case of 1 thread/core

5/9/2015 www.cac.cornell.edu 36
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Track Building

* Building is harder than fitting

« After propagating a track candidate
to the next layer, hits are searched
for within a compatibility window

* Track candidate needs to branch in
case of multiple compatible hits
— The algorithm needs to be robust
against missing/outlier hits
« Due to branching, track building is
the most time consuming step in
event reconstruction, by far

— Design choices must aim to boost

performance on the coprocessor seed

5/9/2015 www.cac.cornell.edu
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Strategy for Track Building

« Keep the same goal of vectorizing and multithreading all operations
— Vectorize by continuing to use Matriplex, just as in fitting
— Multithread by binning tracks in eta (related to angle from axis)
« Add two big complications
— Hit selection: hit(s) on next layer must be selected from ~10k hits
— Branching: track candidate must be cloned for >1 selected hit
« Speed up hit selection by binning hits in both eta and phi (azimuth)
— Faster lookup: compatible hits for a given track are found in a few bins
« Limit branching by putting a cap on the number of candidate tracks
— Sort the candidate tracks at the completion of each layer
— Keep only the best candidates; discard excess above the cap
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Eta Binning

© bin bin0 : binl: bin2 : bin3 : bin4 : bin5: bin6: ... : .. binN-I binN

: tracks_:

hits |

minEta : . : : : : : : . . maxEta

« Eta binning is natural for both track candidates and hits
— Tracks don’t curve in eta

« Form overlapping bins of hits, 2x wider than bins of track candidates
— Track candidates never need to search beyond one extra-wide bin

« Associate threads with distinct eta bins of track candidates
— Assign 1 thread to j bins of track candidates, or vice versa (j can be 1)
— Threads work entirely independently — task parallelism
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% Advanced Hotspots Hotspots viewpoint (change)

Grouping: | Function / Call Stack s] [ @) =]

CPU Time *@
Function / Call Stack Effective Time by Utizatione BsBo® IFS;'.;T:;%M E(S;ngtjr?t Tmalc'c[:;:-axt‘or‘
@ de @ Poor DOk @ !deal @ Over n n

b std vector<int, std: -allocator<int>> vector 40 772« I 114,991.736,536 728.825,808 0
b_int_free 39.751s I 136,359,038,066 0 1,125,954,207
P operator new 32 712« 86,154,002,942 0 0
b atan2f L C——) 96,263,571,713 0 0
P brk 14193 D 2,656,096,078 0 0
P Matriplex: :MatnplexSym<float, (int)3, (int)8>:-Slurpin 13.738s D 27,254,784,743 0 0
b std- vector<Hit, std- allocator<Hit>>: vector 13 491« D 48.368,155.014 1,447.206.650 6,041,737
P Matriplex: - CramerinverterSyme<fioat, (int)3, (int)8> :Invert 8327 D 15,279,940,773 0 0
bsed unguarded_linear_insert<__gnu_cxx::__normal_tterator<Track*, std vector<Track, std: allocator<T 6 8s1s D 40,713.325,132 59,662,888 888.022.699
P ROOT: :Math: MatRepSym<float, (unsigned int}6> :operator= 6.092s 12,600,131,879 0 467,391,832
P _intel_ssse3_rep_memmove 5 754s D 14,338,306.198 0 0
b std: vector<std: -vector<Track, std: -allocator<Track>>, std: allocator<std: vector<Track, std: allocator<T 49275l 8,850,791,643 17,446 13,912,039
b std- vector<EtaBinOfCombCandidate allocator<EtaBinOfCombCandidates>> ~vector 4832 D 5514.436.399 0 34.567.836
P MkFitter - FindCandidates as508s [l 11,976,985,333 7.887.339 187,147.759
P std- vector<Track, std -allocator<Track>> reserve 4334: 7.961.238,732 14,178,785 0
bfree 30188 12,843,035.454 0 0
P std- vector<int, std:allocator<int>>:: M_emplace_back_aux<int const&> 3012s18 24,161.489523 394,041,601 0
P Matriplex: :MatnplexSym<float, (int)6, (int)8>: operator= 2818518 9,673.130.099 0 1.350,384.733
P Track: Track 2 786'.. 7.584,629.305 93,542,787 463911.688
b _10_file_write 25925 435,958,384 ) 0
P propagateHelx ToRMPlex 22038 3.122.056,392 0 0
Pstd:__insertion_sort<__gnu_cxx:.__normal_iterator<Track®, std: .vector<Track, std: ‘allocator<Tack>>>.| 2.164s 7.990,728.691 5.356.129 62,442,951

* Profiling showed the busiest functions were memory operations!
» Cloning of candidates and loading of hits were major bottlenecks

« This was alleviated by reducing sizes of Track by 20%, Hit by 40%
— Track now references Hits by index, instead of carrying full copies

5/9/2015 www.cac.cornell.edu 40



Cornell University
Center for Advanced Computing

Scaling Problems

Xeon - parallelized, vector size = 8 Xeon Phi - parallelized, vector size = 16 (int.)
7 30 w
2 - —+— Measured ?40? —e— Measured
= 25— = -
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Number of threads Number of threads

Test parallelization by distributing threads across 21 eta bins
— For nEtaBin/nThreads = > 1, assign | eta bins to each thread
— For nThreads/nEtaBin = j > 1, assign j threads to each eta bin

Observe poor scaling and saturation of speedup
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Amdahl’s Law

« Possible explanation: some fraction B of work is a serial bottleneck
* If so, the minimum time for n threads is set by Amdahl’s Law

T(n) =T(1) [(1-B)/n + B]

parallelizable... not!

* Note, asymptote as n — « is not zero, but T(1)B

» |dea: plot the scaling data to see if it fits the above functional form
— If it does, start looking for the source of B
— Progressively exclude any code not in an OpenMP parallel section
— Trivial-looking code may actually be a serial bottleneck...
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Busted!

Xeon - parallelized, vector size = 8

Xeon - parallelized, vector size =8
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 Huge improvement from excluding one code line creating eta bins

EventOfCombCandidates event of comb_cands;
// constructor triggers a new std::vector<EtaBinOfCandidates>

« Accounts for 0.145s of serial time (0.155s)... scaling is still not ideal
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What Else Is Going On?

 VTune reveals non-uniformity of occupancy within threads, i.e.,
some threads take far longer than others: load imbalance

— Worsens as threads increase: test below uses 42 threads on MIC

QUQkQ-Qe _ 25140ms_25150ms_ 25160ms 25170ms 25180ms  25190ms 25200ms 25210ms 25220ms 25230ms 25240ms 25250ms 25260ms_ 2527( Ruler Area
OMP Master Thread #0 (TI... 7 Region Instance
OMP Worker Thread #1 (TI...
OMP Worker Thread #41 (...
OMP Worker Thread #40 (...
OMP Worker Thread #21 ...
OMP Worker Thread #4 (Tl...
OMP Worker Thread #16 (... [ Synchronization

OMP Vorker Thread #5 (T..| il S i CPU Time

[] = OpenMP Barrierto-...

: |Thread |

[¥] @@ Running

Context Switches
= [ Preemption

Thread

OMP Worker Thread #23 (... Mk Spin and Overhead ...
OMP Worker Thread #28 |... []* Hardware Event Sample
OMP Worker Thread #11 {... [#] CPU Time

OMP Worker Thread #37 (... ik CPU Time

OMP Worker Thread #17 (... ik Spin and Overhead ...
OMP Worker Thread #24 (...
OMP Worker Thread #26 (...

-

CPU Time

< n >

* Need dynamic reallocation of thread resources, e.g., task queues
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Improvement with Intel Threading Building Blocks

Thread

« TBB allows eta bins to be processed by varying numbers of threads

« Allows idle threads to steal work from busy ones

* Much better load balance
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Parallelization benchmark on Xeon Phi

Scaling Tests

~ —e— BestHit

—#— CloneEngine

—+— CE-SameThread |

—+— NoCloneEngine |
TBB-SameThread |

« Benchmark for the building test
IS the average time to perform
tracking for 10 events emitting
20k charged particles each

. TBB appears to be much | w |
better at keeping all the Xeon
Phi cores busy

Time for 10 events x 20k tracks [s]

Number of Threads

Parallelization speedup on Xeon Phi
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Track Building Test Actually Works, Too

« Each simulated track should have hits in all 10 detector layers
« On average, track builder finds 9.85 hits per track

CloneEngineSameThread

[ Mean 9.853 |

o
T

host NVU1 NTH1

—S— host NVU8 NTH21

Fraction of Tracks

—+H— mic NVU1 NTH1

107 —=— mic NVU16int NTH210

102

Bl

L I L 1 I 1 1 1 | 1 1 1 | 1 1 1 I 1
8 10
Number of Hits Found

o]

(]
i~
.
()

5/9/2015 www.cac.cornell.edu 47



Cornell University
Center for Advanced Computing

Conclusions: Tracking R&D

« Significant progress in creating
parallelized and vectorized tracking
software on Xeon/Xeon Phi

— Good understanding of bottlenecks
— Intel VTune has become a key tool
— Started a port to GPUs (CUDA)

« Better physics results, too

— Transform momentum into curvature
at each detector layer to get a better
error estimate and find more tracks

« Encouraging tests on realistic data

« Still need to incorporate realistic
geometry and materials
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The project is solid and promising
but we still have a long way to go
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Conclusions: HPC in the Many-Core Era

« HPC has moved beyond giant clusters that rely on coarse-grained
parallelism and MPI (Message Passing Interface) communication

— Coarse-grained: big tasks are parceled out to a cluster
— MPI: tasks pass messages to each other over a local network
« HPC now also involves many-core engines that rely on fine-grained
parallelism and SIMD within shared memory
— Fine-grained: threads run numerous subtasks on low-power cores
— SIMD: subtasks act upon multiple sets of operands simultaneously
« Many-core is quickly becoming the norm in laptops, other devices
* Programmers who want their code to run fast must consider how
each big task breaks down into smaller parallel chunks
— Multithreading must be enabled explicitly through OpenMP or an API
— Compilers can vectorize loops automatically, if data are arranged well
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