
www.cac.cornell.edu 1

Hybrid Programming
with OpenMP and MPI

John Zollweg

Introduction to Parallel Computing on Ranger
May 29, 2009

based on material developed by Kent Milfeld, TACC

HW challenges on Ranger?
• Distributed memory - each node has its own - not readily accessible

from other nodes

• Multichip nodes - each node has four chips

• Multicore chips - each chip has four cores

• Memory is associated with chips - more accessible from cores on
same chip

2

How do we deal with NUMA?
• NUMA = Non-Uniform Memory Access

• Distributed memory: MPI

• Shared memory: Threads

– pthreads

– OpenMP

• Both: Hybrid programming

3

Why Hybrid?
• Eliminates domain decomposition at node
• Automatic memory coherency at node
• Lower (memory) latency and data

movement within node
• Can synchronize on memory instead of

barrier

4

Why Not Hybrid?
• Only profitable if on-node aggregation of

MPI parallel components is faster as a
single SMP algorithm (or a single SMP
algorithm on each socket).

5

Hybrid - Motivation
• Load Balancing
• Reduce Memory Traffic

6

Node Views

7

C
P
U

OpenMP

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

MPI

01

2 3
CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

Process-
Affinity
Memory-
Allocation

NUMA Operations
• Where do threads/processes and memory allocations

go?
• If Memory were completely uniform there would be no

need to worry about these two concerns. Only for
NUMA (non-uniform memory access) is (re)placement of
processes and allocated memory (NUMA Control) of
importance.

• Default Control: Decided by policy when process exec’d
or thread forked, and when memory allocated. Directed
from within Kernel.

NUMA CONTROL IS MANAGED BY THE KERNEL.
NUMA CONTROL CAN BE CHANGED WITH NUMACLT.

8

NUMA Operations
• Ways Process Affinity and Memory Policy can be

changed:
– Dynamically on a running process (knowing process id)
– At process execution (with wrapper command)
– Within program through F90/C API

• Users can alter Kernel Policies
(setting Process Affinity and Memory Policy ==
PAMPer)
– Users can PAMPer their own processes.
– Root can PAMPer any process.
– Careful, libraries may PAMPer, too!

9

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

NUMA Operations
• Process Affinity and Memory Policy can be

controlled at socket and core level with numactl.

10

Command: numactl < options socket/core > ./a.out

CPU CPU

CPUCPU

Process: Socket References

01

32

0,1,2,34,5,6,7

12,13,14,158,9,10,11

Process: Core ReferencesMemory: Socket References

0

32

1

process assignment
‐N

memory allocaFon
–l  –i  ‐‐preferred –m

(local, interleaved, pref., mandatory)

core assignment
–C

NUMA Quick Guide

11

 cmd option arguments description

Socket Affinity numactl -N {0,1,2,3}
Execute process on
cores of this (these)
socket(s) only.

Memory Policy numactl -l {no argument}
Allocate on current
socket; fallback to any
other if full.

Memory Policy numactl -i {0,1,2,3}
Allocate round robin
(interleave) on these
sockets. No fallback.

Memory Policy numactl --preferred= {0,1,2,3}
select only one

Allocate on this socket;
fallback to any other if
full.

Memory Policy numactl -m {0,1,2,3}
Allocate only on this
(these) socket(s). No
fallback

Core Affinity numactl -C {0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15}

Execute process on this
(these) core(s) only.

Modes of MPI/Thread Operation
• SMP Nodes

• Single MPI task launched per node
• Parallel Threads share all node memory, e.g 16 threads/

node on Ranger.
• SMP Sockets

• Single MPI task launched on each socket
• Parallel Thread set shares socket memory,

e.g. 4 threads/socket on Ranger
• No Shared Memory (all MPI)

• Each core on a node is assigned an MPI task.
• (not really hybrid, but in master/worker paradigm master

could use threads)
12

Modes of MPI/Thread Operation

13

Pure MPI Node Pure SMP Node

MPI Task on Core

16 MPI Tasks

Master Thread of MPI Task

    1 MPI Task
16 Threads/Task

   4 MPI Tasks
4 Threads/Task

Worker Thread of MPI Task
Master Thread of MPI Task

SMP Nodes

14

Hybrid Batch Script 16 threads/node
• Make sure 1 task is created on each node
• Set total number of cores (nodes x 16)
• Set number of threads for each node
• PAMPering at job level

• Controls behavior for ALL tasks
• No simple/standard way to control thread-core affinity

 job script (Bourne shell) job script (C shell)

... ...
#! -pe 1way 192 #! -pe 1way 192
... ...
export OMP_NUM_THREADS=16 setenv OMP_NUM_THREADS 16
ibrun numactl –i all ./a.out ibrun numactl –i all ./a.out

SMP Sockets

15

 job script (Bourne shell) job script (C shell)

... ...
#! -pe 4way 144 #! -pe 4way 144
... ...
export MY_NSLOTS =36 setenv MY_NSLOTS 36
export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4
ibrun numa.sh ibrun numa.csh

• Example script setup for a square (6x6 = 36) processor topology.
• Create a task for each socket (4 tasks per node).
• Set total number of cores allocated by batch (nodes x 16 cores/node).
• Set actual number of cores used with MY_NSLOTS.
• Set number of threads for each task
• PAMPering at task level

 Create script to extract rank for numactl options, and a.out execution
(TACC MPI systems always assign sequential ranks on a node.

 No simple/standard way to control thread-core affinity

Hybrid Batch Script 4 tasks/node, 4 threads/task

SMP Sockets

16

Hybrid Batch Script 4 tasks/node, 4 threads/task

fo
r m

va
pi

ch
2

 numa.sh

#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0

#TasksPerNode
TPN = `echo $PE | sed ‘s/way//’
[! $TPN] && echo TPN NOT defined!
[! $TPN] && exit 1

socket = $(($PMI_RANK % $TPN))

exec numactl -N $socket -m $socket ./a.out

 numa.csh

#!/bin/tcsh
setenv MV2_USE_AFFINITY 0
setenv MV2_ENABLE_AFFINITY 0

#TasksPerNode
set TPN = `echo $PE | sed ‘s/way//’
if(! ${%TPN}) echo TPN NOT defined!
if(! ${%TPN}) exit 0

@ socket = $PMI_RANK % $TPN

exec numactl -N $socket -m $socket ./a.out

Hybrid – Program Model
• Start with MPI initialization
• Create OMP parallel regions

within MPI task (process).
• Serial regions are the

master thread or MPI task.
• MPI rank is known to all threads

• Call MPI library in serial
and parallel regions.

• Finalize MPI
17

Program
MPI_Init
…
 MPI_call

…
 MPI_call
…
MPI_Finalize

OMP Parallel
…
MPI_call
…
end parallel

MPI with OpenMP -- Messaging

18

Single-threaded
messaging

Node

Multi-threaded
messaging

Node

Node Node

MPI from serial region or a single thread within parallel region

MPI from multiple threads within parallel region
Requires thread-safe implementation

rank to rank

rank-thread ID to any rank-thread ID

Threads calling MPI
• Use MPI_Init_thread to select/determine MPI’s

thread level of support (in lieu of MPI_Init).
MPI_Init_thread is supported in MPI2

• Thread safety is controlled by “provided” types:
single, funneled, serialized and multiple
• Single means there is no multi-threading.
• Funneled means only the master thread calls MPI
• Serialized means multiple threads can call MPI, but

only 1 call can be in progress at a time (serialized).
• Multiple means MPI is thread safe.
• Monotonic values are assigned to Parameters:

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED <
MPI_THREAD_MULTIPLE 19

MPI2 MPI_Init_thread

20

Syntax:
 call MPI_Init_thread(irequired, iprovided, ierr)
 int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)
 int MPI::Init_thread(int& argc, char**& argv, int required)

Support Levels Description
MPI_THREAD_SINGLE Only one thread will execute.
MPI_THREAD_FUNNELED Process may be multi-threaded, but only main

thread will make MPI calls (calls are ’’funneled'' to
main thread). “Default”

MPI_THREAD_SERIALIZE Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (MPI calls are ’’serialized'').

MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required.
Otherwise, the highest level of support will be provided.

Hybrid Coding

21

include ‘mpif.h’
program hybsimp

 call MPI_Init(ierr)
 call MPI_Comm_rank (...,irank,ierr)
 call MPI_Comm_size (...,isize,ierr)
! Setup shared mem, comp. & Comm

!$OMP parallel do
    do i=1,n
       <work>
    enddo
!  compute & communicate

 call MPI_Finalize(ierr)
 end

#include <mpi.h>
int main(int argc, char **argv){
 int rank, size, ierr, i;

 ierr= MPI_Init(&argc,&argv[]);
 ierr= MPI_Comm_rank (...,&rank);
 ierr= MPI_Comm_size (...,&size);
//Setup shared mem, compute & Comm

#pragma omp parallel for
    for(i=0; i<n; i++){
       <work>
    }
// compute & communicate

 ierr= MPI_Finalize();

Fortran C

MPI Call through Master

22

• MPI_THREAD_FUNNELED

• Use OMP_BARRIER since there is no
implicit barrier in master workshare
construct (OMP_MASTER).

• All other threads will be sleeping.

Funneling through Master

23

include ‘mpif.h’
program hybmas

!$OMP parallel

   !$OMP barrier
   !$OMP master

     call MPI_<Whatever>(…,ierr)
   !$OMP end master

   !$OMP barrier

!$OMP end parallel
end

#include <mpi.h>
int main(int argc, char **argv){
  int rank, size, ierr, i;

#pragma omp parallel
  {
   #pragma omp barrier
   #pragma omp master
   {
     ierr=MPI_<Whatever>(…)
   }

   #pragma omp barrier
  
  }
}

Fortran C

MPI Call within Single
• MPI_THREAD_SERIALIZED

• Only OMP_BARRIER is at beginning,
since there is an implicit barrier in SINGLE
workshare construct (OMP_SINGLE).

• All other threads will be sleeping.

• (The simplest case is for any thread to execute a single mpi call, e.g.
with the “single” omp construct. See next slide.)

24

Serialize through Single

25

include ‘mpif.h’
program hybsing

call mpi_init_thread(MPI_THREAD_SERIALIZED,  
  iprovided,ierr)
!$OMP parallel

   !$OMP barrier
   !$OMP single

     call MPI_<whatever>(…,ierr)
   !$OMP end single

   !!OMP barrier

!$OMP end parallel
end

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;
mpi_init_thread(MPI_THREAD_SERIALIZED,  
      iprovided)
 #pragma omp parallel
 {
   #pragma omp barrier
   #pragma omp single
   {
     ierr=MPI_<Whatever>(…)
   }

   //pragma omp barrier

  }
}

Fortran C

Overlapping Communication and
Work

• One core can saturate the PCI-e
network bus. Why use all to
communicate?

• Communicate with one or several cores.
• Work with others during communication.
• Need at least MPI_THREAD_FUNNELED

support.
• Can be difficult to manage and load

balance! 26

Overlapping Communication and
Work

27

include ‘mpi.h’
program hybover

!$OMP parallel

   if (ithread .eq. 0) then
      call MPI_<whatever>(…,ierr)
   else
      <work>
   endif

!$OMP end parallel
end

#include <mpi.h>
int main(int argc, char **argv){
 int rank, size, ierr, i;

  #pragma omp parallel
  {
   if (thread == 0){
      ierr=MPI_<Whatever>(…)
   }
   if(thread != 0){
      work
   }
  }

Fortran C

Thread-rank Communication
• Can use thread id and rank in

communication
• Example illustrates technique in multi-

thread “ping” (send/receive).

28

Thread-rank Communication

29

…
call mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)
call mpi_comm_size(MPI_COMM_WORLD,nranks, ierr)
…
!$OMP parallel private(i, ithread, nthreads)
…
   nthreads=OMP_GET_NUM_THREADS()
   ithread   =OMP_GET_THREAD_NUM()
   call pwork(ithread, irank, nthreads, nranks…)
   if(irank == 0) then
      call mpi_send(ithread,1,MPI_INTEGER, 1, ithread, MPI_COMM_WORLD, ierr)
   else
      call mpi_recv(j,1,MPI_INTEGER, 0, ithread, MPI_COMM_WORLD, istatus,ierr)
      print*, "Yep, this is ",irank," thread ", ithread," I received from ", j
   endif
    
!$OMP END PARALLEL
end

Communicate between ranks.

Threads use tags to differentiate.

NUMA in Code
• Scheduling Affinity and Memory Policy can be

changed within code through:
– sched_get/setaffinity
– get/set_memorypolicy

• Scheduling: Bits in a mask are set for assignments.

30

0 100000000000000

0 000000000000001

Assignment to Core 0

Assignment to Core 15

Assignment to Core 0 or 150 100000000000001

NUMA in Code
• Scheduling Affinity

31

…
#include <spawn.h>
…
int icore=3;
cpu_set_t cpu_mask;
…
CPU_ZERO(&cpu_mask);
CPU_SET(icore,&cpu_mask);

err = sched_setaffinity((pid_t)0 ,
 sizeof(cpu_mask),
 &cpu_mask);

C API params/protos

Set core number
Allocate mask

Set mask to zero
Set mask with core #

Set the affinity

Conclusion
• Placement and binding of processes, and

allocation location of memory are important
performance considerations in pure MPI/OpenMP
and Hybrid codes.

• Simple numactl commands and APIs allow users
to control process and memory assignments.

• 8-core and 16-core socket systems are on the
way; even more effort will be focused on process
scheduling and memory location.

• Expect to see more multi-threaded libraries.
32

References
• www.nersc.gov/about/NUG/meeting_info/Jun04/TrainingTalks/

NUG2004_yhe_hybrid.ppt
Hybrid OpenMP and MPI Programming and Tuning (NUG2004),Yun (Helen)
He and Chris Ding, Lawrence Berkeley National Laboratory, June 24, 2004.

• www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/
node162.htm#Node162

• services.tacc.utexas.edu/index.php/ranger-user-guide#Process%20Affinity
%20and%20Memory%20Policy

• www.mpi-forum.org/docs/mpi2-report.pdf

• www.intel.com/software/products/compilers/docs/fmac/doc_files/source/
extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

33

