
05/28/09 www.cac.cornell.edu 1

Advanced MPI

John Zollweg

Introduction to Parallel Computing
May 28, 2009

based on material developed by Bill Barth, TACC

Introduction & Outline

• Point to Point blocking/non-blocking communication

• Collective communication with non-contiguous data

• Groups and communication management

• Derived Datatypes

• Persistent communication

• Parallel I/O

• Status of MPI-2

2

Advanced point-to-point
communication

3

Point to Point Comm. I

10/20/08 www.cac.cornell.edu 2

• Blocking send/receive

• MPI_Send, does not return until buffer is safe to reuse: either when
buffered, or when actually received. (implementation / runtime
dependent)

• Rule of thumb: send completes only if receive is posted/executed

Point to Point Comm. II

5

• Synchronous Mode
– MPI_Ssend, which does not return until matching receive has

been posted (non-local operation).

• Buffered Mode
– MPI_Bsend, which completes as soon as the message buffer is

copied into user-provided buffer (one buffer per process)

Point to Point Comm. III

6

• Ready Mode
– MPI_Rsend, which returns immediately assuming that a matching

receive has been posted, else erroneous.

• Deadlock occurs when all tasks are waiting for events that haven’t
been initiated yet. It is most common with blocking communication.

Point to Point Comm. III
• Ready Mode has least total overhead. However the assumption is

that receive is already posted. Solution: post receive, synchronise
(zero byte send), then post send.

• Synchronous mode is portable and “safe”. It does not depend on
order (ready) or buffer space (buffered). However it incurs
substantial overhead.

• Buffered mode decouples sender from receiver. No sync. overhead
on sending task and order of execution does not matter (ready).
User can control size of message buffers and total amount of space.
However additional overhead may be incurred by copy to buffer.

• Standard Mode is implementation dependent. Small messages are
generally buffered (avoiding sync. overhead) and large messages
are usually sent synchronously (avoiding the required buffer space)

7

Point to Point Comm IV: non-blocking
• Nonblocking communication: calls return, system handles buffering

• MPI_Isend, completes immediately but user must check status
before using the buffer for same (tag/receiver) send again; buffer
can be reused for different tag/receiver.

• MPI_Irecv, gives a user buffer to the system; requires checking
whether data has arrived.

8

Non-blocking Example
• Blocking operations can lead to deadlock

• Actual user code:

• Problem: all sends
are waiting for
corresponding
receive:
nothing happens

• Why did the user
code work on one
machine, but not
in general?

9

 ! SEND WELL DATA
 LM=6*NES+2
 DO I=1,NUMPRC
 NT=I-1
 IF (NT.NE.MYPRC) THEN
 print *,myprc,'send',msgtag,'to',nt
 CALL MPI_SEND(NWS,LM,MPI_INTEGER,NT,
 & MSGTAG,MPI_COMM_WORLD,IERR)
 ENDIF
 END DO

 ! RECEIVE WELL DATA
 LM=6*100+2
 DO I=2,NUMPRC
 CALL MPI_RECV(NWS,LM,MPI_INTEGER,
 & MPI_ANY_SOURCE,MSGTAG,MPI_COMM_WORLD,IERR)
 ! do something with data
 END DO

Solution using non-blocking send
 real*8 sendbuf(d,np-1), recvbuf(d)

 MPI_Request sendreq(np)

 do p=1,nproc-1

 pp = 0

 if (p.ge.mytid) pp = pp+1

 call mpi_isend(sendbuf(1,p),d,MPI_DOUBLE,pp,msgtag,

 & comm,sendreq(p),ierr)

 end do

 do p=1,nproc-1

 call mpi_recv(recvbuf(1),d,MPI_DOUBLE,MPI_ANY_SOURCE,

 & msgtag,comm,ierr)

c do something with incoming data

 end do

Note: This requires multiple send buffers, should “wait” later... 10

Solution using non-blocking send/recv
 real*8 sendbuf(d,np-1), recvbuf(d,np-1)

 MPI_Request sendreq(np-1), recvreq(np-1)

 integer sendstat(MPI_STATUS_SIZE),recvstat(MPI_STATUS_SIZE)

 do p=1,nproc-1

C mpi_isend as before

 end do

 do p=1,nproc-1

 pp = p

 if (pp.ge.mytid) pp = pp+1

 call mpi_irecv(recvbuf(1,p),d,MPI_DOUBLE,pp,

 & msgtag,comm,recvreq(p),ierr)

 end do

 call mpi_waitall(nproc-1,sendreq,sendstat,ierr)

 call mpi_waitall(nproc-1,recvreq,recvstat,ierr)
11

Note: multiple send
and receive buffers;
Explicit wait calls to
make sure commun-
ications are finished.

Non-blocking example
• Non-blocking operations allow overlap of computation and

communication.

• Application: distributed matrix-vector product

• Also non-blocking R/B/Ssend

12

MPI_Irecv(<declare receive buffer>)
MPI_Isend(<send local data>)
…. Do local operations ….
MPI_Waitall(<make sure all receives finish>)
…. Operate on received data ….

Point to Point Comm. V
• “Wildcard communication”: source or details unknown

 can use MPI_ANY_SOURCE or MPI_ANY_TAG

 MPI_IPROBE(source, tag, comm, flag, status)
 (non-blocking; MPI_Probe is blocking)

MPI_Waitany(int count, MPI_Request
*array_of_requests, int *index, MPI_Status
*status)

 (allows processing of data as it comes in)

 MPI_Testany / Testall : non-blocking

13

Point to Point Comm. VI
• MPI_Sendrecv : both in on call, source and destination can be the

same

• Also MPI_Sendrecv_Replace; needs additional buffering

• Example 1: exchanging data with one other node; target and source
the same

• Example 2: chain of processors
– Operate on data
– Send result to next processor, and receive next input from

previous processor in line

14

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,
 recvbuf, recvcount, recvtype, source, recvtag, comm, status)

Collective communications

15

p0

p1

p2

p3

A

Advanced Collective Comm. I

16

Scatter
and

Gather
Root

task or
processor

“send” array
element or
single variable

before after

broadcast

scatter

gather

allgather

p0

p1

p2

p3

A B C D

p0

p1

p2

p3

A

B

C

D

p0

p1

p2

p3

A

B

C

D

p0

p1

p2

p3

A

A

A

A

p0

p1

p2

p3

A

B

C

D

p0

p1

p2

p3

A B C D

p0

p1

p2

p3

A B C D

A B C D

A B C D

A B C D

Advanced Collective Comm. II
• MPI_{Scatter,Gather,Allgather}v
• What does v stand for?

– varying size, relative location of messages

• Advantages
– more flexibility
– less need to copy data into temp. buffers
– more compact

• Disadvantage
– Lot harder to program

17

CALL mpi_scatterv (SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE,
RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERR)

SENDCOUNTS(I) is the number of items of type SENDTYPE to send
from process ROOT to process I. Defined on ROOT.

DISPLS(I) is the displacement from SENDBUF to the
beginning of the I-th message, in units of SENDTYPE.
Defined on ROOT.

Advanced Collective Comm. II+

18

• Scatter vs Scatterv

Allgatherv Example

19

 MPI_Comm_size(comm,&ntids);

 sizes = (int*)malloc(ntids*sizeof(int));

 MPI_Allgather(&n,1,MPI_INT,sizes,1,MPI_INT,comm);

 offsets = (int*)malloc(ntids*sizeof(int));

 s=0;

 for (i=0; i<ntids; i++)

 {offsets[i]=s; s+=sizes[i];}

 N = s;

 result_array = (int*)malloc(N*sizeof(int));

 MPI_Allgatherv

 ((void*)local_array,n,MPI_INT,(void*)result_array,

 sizes,offsets,MPI_INT,comm);

 free(sizes); free(offsets);

Derived Datatypes

20

Derived Datatypes I
• MPI basic data-types are predefined for contiguous data

of single type

• What if application has data of mixed types, or non-
contiguous data?
– existing solutions of multiple calls or copying into

buffer and packing etc. are slow, clumsy and waste
memory

– better solution is creating/deriving datatypes for these
special needs from existing datatypes

• Derived datatypes can be created recursively at runtime

• Automatic packing and unpacking
21

Derived Datatypes II
• Elementary: Language-defined types

• Contiguous: Vector with stride of one

• Vector: Separated by constant “stride”

• Hvector: Vector, with stride in bytes

• Indexed: Array of indices (for scatter/gather)

• Hindexed: Indexed, with indices in bytes

• Struct: General mixed types (for C structs etc.)
22

Derived Datatypes III

23

blklen =2

stride=5, in elements

Vector
(strided)

“Struct”

v_blk_len[0]=3

Indexedcount = 3
blocks

v_blk_len[1]=2 v_blk_len[2]=1

v_disp[0]=0 v_disp[1]=5 (in elements) v_disp[1]=12

count = 3
elements

type[0] type[1] type[2]

v_disp[0] v_disp[1] (in bytes) v_disp[2]

count = 3
blocks

v_blk_len[0]=2 v_blk_len[1]=3 v_blk_len[2]=4

Derived Datatypes IV
• MPI_TYPE_VECTOR function allows creating non-

contiguous vectors with constant stride

24

mpi_type_vector(count, blocklen, stride, oldtype, vtype, ierr)
mpi_type_commit(vtype, ierr)

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

A

call MPI_Type_vector(ncols, 1, nrows, MPI_DOUBLE_PRECISION, vtype, ierr)

call MPI_Type_commit(vtype, ierr)
call MPI_Send(A(nrows,1) , 1 , vtype …)

ncols = 4
nrows = 5

Communicators and Groups

25

Communicators and Groups I
• All MPI communication is relative to a communicator

which contains a context and a group. The group is just a
set of processes.

26

MPI_COMM_WORLD

0 1 32 4

MPI_COMM_WORLD

COMM1

COMM2

0
1

2

0 1

Communicators and Groups II
• To subdivide communicators into multiple non-

overlapping communicators – Approach I
– e.g. to form groups of rows of PEs

27

 :
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
myrow = (int)(rank/ncol);
 :

MPI_Comm_split
• Argument #1: communicator to split

• Argument #2: key, all processes with the same key go in
the same communicator

• Argument #3 (optional): value to determine ordering in
the result communicator

• Argument #4: result communicator

28

 :
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
myrow = (int)(rank/ncol);
MPI_Comm_split(MPI_COMM_WORLD, myrow,rank,row_comm);
 :

Communicators and Groups III
• Same example – using groups

• MPI_Comm_group: extract group from communicator

• Create new groups

• MPI_Comm_create: communicator from group

29

   :
MPI_Group base_grp, grp; MPI_Comm row_comm, temp_comm;
int row_list[NCOL], irow, myrank_in_world;

MPI_Comm_group(MPI_COMM_WORLD,&base_grp); // get base group

MPI_Comm_rank(MPI_COMM_WORLD,&myrank_in_world);
irow = (myrank_in_world/NCOL);
for (i=0; i <NCOL; i++) row_list[i] = i;

for (i=0; i <NROW; i++){
 MPI_Group_incl(base_grp,NCOL,row_list,&grp);
 MPI_Comm_create(MPI_COMM_WORLD,grp,&temp_comm);
 if (irow == i) *row_comm=temp_comm;
 for (j=0;j<NCOL;j++) row_list[j] += NCOL;
}
      :

Communicator groups example

30

Communicators and Groups IV
• When using MPI_Comm_split, one

communicator is split into multiple non-
overlapping communicators. Approach I is more
compact and is most suitable for regular
decompositions.

• Approach II is most generally applicable. Other
group commands: union, difference,
intersection, range in/exclude

31

Persistent communication

32

Persistent Communication I
• Saves arguments of a communication call and reduces

the overhead for subsequent calls

• The INIT call takes the original argument list of a send or
receive call and creates a corresponding communication
request (e.g., MPI_SEND_INIT, MPI_RECV_INIT)

• The START call uses the communication request to start
the corresponding operation (e.g. MPI_START,
MPI_STARTALL)

• The REQUEST_FREE call frees the persistent
communication request(MPI_REQUEST_FREE)

33

Persistent Communication II
• A typical situation where persistence might be used.

34

 :
MPI_Recv_init(buf1, count,type,src,tag,comm,&req[0]);
MPI_Send_init(buf2, count,type,src,tag,comm,&req[1]);

for (i=1; i < BIGNUM; i++)
{
 MPI_Start(&req[0]);
 MPI_Start(&req[1]);
 MPI_Waitall(2,req,status);
 do_work(buf1, buf2);
}

MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);
 :

Persistent Communication III
• Performance benefits (IBM SP2) from using Persistence

35

Improvement in Wallclock Time
Persistent vs. Conventional Communication

msize (bytes) mode improvement mode improvement
8 async 19 % sync 15 %
4096 async 11 % sync 4.7 %
8192 async 5.9 % sync 2.9 %
800,000 - - sync 0 %
8,000,000 - - sync 0 %

Parallel I/O

36

What is Parallel I/O?
• In HPC parallel I/O, multiple MPI tasks can

– simultaneously read or write to
– a single file
– in a parallel file system,
– through the MPI-IO interface. A parallel file system appears as a

normal Unix file system and (usually) employs multiple I/O
servers for sustaining high I/O throughput.

• Alternatives to parallel MPI-IO:
– Task 0 accesses file. Task 0 gathers/scatters data.
– Each process opens a separate file and writes to it

37

Why Parallel I/O?
• I/O missing from MPI-1 standard, defined independently, then

subsumed into MPI-2
• HPC Parallel I/O requires some work, but

– Provides high throughput
– Single (unified) file for vis. and pre/post processing

• Alternative I/O is simple to code, but has
– Poor convenience (single task access to 1 file) or
– Requires file management (each task uses local disk)

• MPI-IO has mechanisms to
– perform synchronization and data movement syntax.
– define noncontiguous data layout in file (MPI datatypes)

38

Simple MPI-IO
Each MPI task reads/writes a single block

39

FILE

P0
P1
P2

P(n-1)

P# is a single processor with rank #.…

memory
memory
memory

memory

Reading, Using Individual File Pointers

40

C Code
MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
 MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);

Reading, Using Explicit Offsets

41

F90 Code
 include 'mpif.h'
 integer status(MPI_STATUS_SIZE)
 integer (kind=MPI_OFFSET_KIND) offset

 nints = FILESIZE/(nprocs*INTSIZE)
 offset = rank * nints * INTSIZE

 call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
 MPI_MODE_RDONLY, &
 MPI_INFO_NULL, fh, ierr)

 call MPI_FILE_READ_AT(fh, offset, buf, nints,
 MPI_INTEGER, status, ierr)

 call MPI_FILE_CLOSE(fh, ierr)

Writing (with pointers or offsets)
• Use MPI_File_write or MPI_File_write_at
• MPI_File_open flags:

– MPI_MODE_WRONLY (write only)
– MPI_MODE_RDWR (read and write)
– MPI_MODE_CREATE (create file if it doesn’t exist)
– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran to combine

multiple flags.

42

Shared Pointers
• One implicitly maintained pointer per collective file open
• MPI_File_read_shared

• MPI_File_write_shared

• MPI_File_seek_shared

Noncontiguous Accesses
• Common in parallel applications

• Example: distributed arrays stored in files

• A big advantage of MPI I/O over Unix I/O is the ability to
specify noncontiguous accesses in memory and file
within a single function call by using derived datatypes

• Allows implementation to optimize the access

• Collective IO combined with noncontiguous accesses
yields the highest performance.

43

A Simple File View Example

44

Example for 4-task job.etype = MPI_DOUBLE_PRECISION

filetype = View sees DP every 4th DP.

displacements

FILE: Same View on each task with different displacementshead of file

…

… task0
task1
task2
task3

…
…
…

FILE

File Views
• A triplet (displacement, etype, and filetype) passed to
MPI_File_set_view

• displacement = number of bytes to be skipped from the
start of the file

• etype = basic unit of data access (can be any basic or
derived datatype)

• filetype = specifies layout of etypes on disk.

45

Using File Views
• 1 block from each task, written in task order.

• MPI_File_set_view assigns regions of the
file to separate processes

46

File

P0 P1 P2 P3

File View Code

47

#define N 100
MPI_Datatype arraytype;
MPI_Offset disp;

MPI_Type_contiguous(N, MPI_INT, &arraytype);
MPI_Type_commit(&arraytype);

disp = rank*sizeof(int)*N; etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
 MPI_MODE_CREATE | MPI_MODE_RDWR,
 MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, disp, MPI_INT, arraytype, "native",
 MPI_INFO_NULL);
MPI_File_write(fh, buf, N, MPI_INT, MPI_STATUS_IGNORE);

Using File Views
• 2 blocks from each task, round-robin to file.

• MPI_File_set_view assigns regions of the file to
separate processes

48

File

P0 P1 P2 P3NW NW

File View Code

49

 int buf[NW*2];
 MPI_File_open(MPI_COMM_WORLD, "/data2“, MPI_MODE_CREATE |
 MPI_MODE_RDWR,MPI_INFO_NULL,&fh);

 /* this processor can see only 2 blocks of NW ints,
 NW*npes apart */
 MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);
 MPI_Type_commit(&fileblk);
 disp = (MPI_Offset)rank*NW*sizeof(int);
 MPI_File_set_view(fh, disp, MPI_INT, fileblk, "native",
 MPI_INFO_NULL);

 /* processor writes 2 ‘ablk’, which are NW ints each */
 MPI_Type_contiguous(NW, MPI_INT, &ablk);
 MPI_Type_commit(&ablk);
 MPI_File_write(fh, (void *)buf, 2, ablk, &status);

Collective I/O in MPI
• A critical optimization in parallel I/O

• Allows communication of “big picture” to file system

• Framework for 2-phase I/O, in which communication
precedes I/O (uses MPI machinery)

• Basic idea: build large blocks, so that reads/writes in I/O
system will be large

50

Small individual
requests

Large collective
access

COLLECTIVE I/O

51

Memory layout on 4 processors

then written to File layout

MPI collected in temporary buffers

COLLECTIVE I/O
• MPI_File_read_all,
MPI_File_read_at_all, etc

• _all indicates that all processes in the group specified
by the communicator passed to MPI_File_open will
call this function

• Each process specifies only its own access information
-- the argument list is the same as for the non-collective
functions

52

COLLECTIVE I/O
• By calling the collective I/O functions, the user allows an

implementation to optimize the request based on the
combined requests of all processes

• The implementation can merge the requests of different
processes and service the merged request efficiently

• Particularly effective when the accesses of different
processes are noncontiguous and interleaved

53

More advanced I/O
• Asynchronous I/O: iwrite/iread; terminate with
MPI_Wait

• Split operations: read/write_all_begin/end;
give the system more chance to optimize

54

Passing Hints to the Implementation

55

MPI_Info info;

MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
 MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

MPI_Info_free(&info);

Examples of Hints (used in ROMIO)

56

• striping_unit

• striping_factor

• cb_buffer_size

• cb_nodes

• ind_rd_buffer_size

• ind_wr_buffer_size

• start_iodevice

• pfs_svr_buf

• direct_read

• direct_write

MPI-2 predefined hints

New Algorithm
Parameters

Platform-specific hints

Summary of Parallel I/O Issues
• MPI I/O has many features that can help users achieve

high performance

• The most important of these features are the ability to
specify noncontiguous accesses, the collective I/O
functions, and the ability to pass hints to the
implementation

• Use is encouraged, because I/O is expensive!

• In particular, when accesses are noncontiguous, users
must create derived datatypes, define file views, and use
the collective I/O functions

57

MPI-2 Status Assessment
• All vendors now have MPI-1. Free implementations

(MPICH, LAM) support heterogeneous workstation
networks.

• MPI-2 implementations are being undertaken now by all
vendors.
– Fujitsu, NEC have complete MPI-2 implementations

• MPI-2 implementations appearing piecemeal, with I/O
first.
– I/O available in most MPI implementations
– One-sided available in some (e.g., NEC and Fujitsu, parts from

SGI and HP, parts coming soon from IBM)
– OpenMPI (aka LAM) and MPICH2 now becoming complete

58

References
• Using MPI by Gropp, Lusk and Skjellum

• Using MPI-2 by Gropp, Lusk and Thakur

• http://www.nersc.gov/vendor_docs/ibm/pe

• https://asc.llnl.gov/computing_resources/purple/archive/
benchmarks/ior/

• MPI 1.1 standard (http://www.mpi-forum.org/docs/mpi-11-html/
node182.html)

• MPI 2 standard (http://www.mpi-forum.org/docs/mpi-20-html/
node306.htm)

59

