
Tau
Introduction

Lars Koesterke
(& Kent Milfeld, Sameer Shende)

Cornell University
Ithaca, NY

March 13, 2009

Outline
• General

– Measurements
– Instrumentation & Control
– Example: matmult

• Profiling and Tracing
– Event Tracing
– Steps for Performance Evaluation
– Tau Architecture

• A look at a task-parallel MxM Implementation
• Paraprof Interface

2

General

• Tuning and Analysis Utilities (11+ year project effort)

www.cs.uoregon.edu/research/paracomp/tau/

• Performance system framework for parallel, shared &
distributed memory systems

• Targets a general complex system computation model
– Nodes / Contexts / Threads

• Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization

TAU = Profiler and Tracer + Hardware Counters + GUI + Database

3

Tau: Measurements
• Parallel profiling

– Function-level, block (loop)-level, statement-level
– Supports user-defined events
– TAU parallel profile data stored during execution
– Hardware counter values
– Support for multiple counters
– Support for callgraph and callpath profiling

• Tracing
– All profile-level events
– Inter-process communication events
– Trace merging and format conversion

4

PDT is used to instrument your code.

Replace mpicc and mpif90 in make files with tau_f90.sh and tau_cc.sh

It is necessary to specify all the components that will be used in the
instrumentation (mpi, openmp, profiling, counters [PAPI], etc. However, these
come in a limited number of combinations.)

Combinations: First determine what you want to do (profiling, PAPI counters,
tracing, etc.) and the programming paradigm (mpi, openmp), and the compiler.
PDT is a required component:

Tau: Instrumentation

PAPI
Callpath
…

MPI
OMP
…

intel
pgi
gnu

PDT
Hand-code

Collectors Compiler:Parallel
ParadigmInstrumentation

5

You can view the available combinations
(alias tauTypes 'ls -C1 $TAU | grep Makefile ').

Your selected combination is made known to the compiler wrapper through
the TAU_MAKEFILE environment variable.

E.g. the PDT instrumention (pdt) for the Intel compiler (icpc) for MPI (mpi)
is set with this command:

setenv TAU_MAKEFILE /…/Makefile.tau-icpc-mpi-pdt

Other run-time and instrumentation options are set through
TAU_OPTIONS. For verbose:

setenv TAU_OPTIONS ‘-optVerbose’

Tau: Instrumentation

6

% tar –xvf ~train00/tau.tar

% cd tau READ the Instructions file

% source sourceme.csh
or
% source sourceme.sh create env. (modules and TAU_MAKEFILE)

% make matmultf create executable(s)
or
% make matmultc

% qsub job submit job (edit and uncomment ibrun line)

% paraprof (for GUI) Analyze performance data:

Tau Example

7

Definitions – Profiling
• Profiling

– Recording of summary information during execution
• inclusive, exclusive time, # calls, hardware statistics, …

– Reflects performance behavior of program entities
• functions, loops, basic blocks
• user-defined “semantic” entities

– Very good for low-cost performance assessment
– Helps to expose performance bottlenecks and hotspots
– Implemented through

• sampling: periodic OS interrupts or hardware counter traps
• instrumentation: direct insertion of measurement code

8

Definitions – Tracing

Tracing
Recording of information about significant points (events)
during program execution

entering/exiting code region (function, loop, block, …)
thread/process interactions (e.g., send/receive message)

Save information in event record
timestamp
CPU identifier, thread identifier
Event type and event-specific information

Event trace is a time-sequenced stream of event records
Can be used to reconstruct dynamic program behavior
Typically requires code instrumentation

9

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 worker

3 ...

void worker {
trace(ENTER, 2);

...
recv(A, tag, buf);
trace(RECV, A);

...
trace(EXIT, 2);

}

void master {
trace(ENTER, 1);

...
trace(SEND, B);

send(B, tag, buf);
...

trace(EXIT, 1);
}

MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

10

Event Tracing: “Timeline” Visualization

1 master
2 worker
3 ...

58 A ENTER 1
60 B ENTER 2
62 A SEND B
64 A EXIT 1
68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

11

Steps of Performance Evaluation

Collect basic routine-level timing profile to determine
where most time is being spent
Collect routine-level hardware counter data to determine
types of performance problems
Collect callpath profiles to determine sequence of events
causing performance problems
Conduct finer-grained profiling and/or tracing to pinpoint
performance bottlenecks

Loop-level profiling with hardware counters
Tracing of communication operations

12

TAU Performance System Architecture

13

Overview of Matmult: C = A x B

Create
A & B

A BC = x
Order N
P Tasks

MASTER Worker

Receive B

Send
Row of A

Multiply row a x B

Send Back row of C

Receive a

Receive
Row of C

Send B

jj x=

14

Preparation of Matmult: C = A x B

PE 0

Create
A

Create
B

Generate
A & B

Broadcast
B to All
by columns

PE 0 PE x

MPI_Bcast(b(1,i)…

loop over i (i=1 n)

PE 0

A BC = x
Order N
P Tasks

MASTER

15

Master Ops of Matmult: C = A x B

Master (0) sends rows
1 through (p-1) to
slaves (1 p-1) receives

1

p-1

PE 0 PE 1 -- p-1

MPI_Send(arow … i,i

loop over i (i=1 p-1)

destination
tag

Master (0) receives rows
1 through (n) from
Slaves.

1

n

PE 0 PE 1 -- p-1

MPI_Recv(crow … ANY,k

loop over i (i=1 n)

source,tag

MPI_Send(arow …idle,j
dest,tag

A BC = x
Order N
P Tasks

MASTER

16

Master Ops of Matmult: C = A x B

Slave(any) sends row
j of C to master, PE 0

PE 0
MPI_Send(crow … j

jrow j

Slaves multiply all
Columns of B into
A (row i) to form
row i of Matrix C

x=

Pick up broadcast of
B columns from PE 0

MPI_Recv(arow …ANY,j

loop over i (i=1 n)

Matrix * Vector

row j

A BC = x
Order N
P Tasks

Worker

Slave receives any
A row from PE 0 j

j

17

Paraprof and Pprof

• Execute application and analyze performance data:
• % qsub job

– Look for files: profile.<task_no>.
– With Multiple counters, look for directories for each

counter.
• % pprof (for text based profile display)
• % paraprof (for GUI)

– pprof and paraprof will discover files/directories.
– paraprof runs on PCs,Files/Directories can be downloaded

to laptop and analyzed there.

18

Tau Paraprof Overview

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial

19

Tau Paraprof Manager Window
Provides Machine Details
Organizes Runs as: Applications, Experiments and Trials.

20

Routine Time Experiment

Profile Information is in “GET_TIME_OF_DAY” metric
Mean and Standard Deviation Statistics given.

21

Multiply_Matrices Routine Results

not from same run

Function Data Window gives a closer look at a single function:

22

Float Point OPS trial

Hardware Counters provide Floating Point Operations (Function Data view).

23

L1 Data Cache Miss trial

Hardware Counters provide L1 Cache Miss Operations.

24

Call Path

Call Graph Paths (Must select through “thread” menu.)

25

Call Path
TAU_MAKEFILE =
…Makefile.tau-callpath-icpc-mpi-pdt

26

Derived Metrics
Select Argument 1 (green ball); Select Argument 2 (green ball);
Select Operation; then Apply. Derived Metric will appear as a new trial.

27

Derived
Metrics

Be careful even though
ratios are constant, cores
may do different amounts
of work/operations per call.

Since FP/Miss
ratios are
constant– must
be memory
access problem.

PAPI Implementation
Tools

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
Dependent SubstrateMachine

Specific
Layer

Portable
Layer

29

PAPI Performance Monitor

• Provides high level counters for events:
– Floating point instructions/operations,
– Total instructions and cycles
– Cache accesses and misses
– Translation Lookaside Buffer (TLB) counts
– Branch instructions taken, predicted, mispredicted

• PAPI_flops routine for basic performance analysis
– Wall and processor times
– Total floating point operations and MFLOPS

http://icl.cs.utk.edu/projects/papi

• Low level functions are thread-safe, high level are not

30

PAPI Preset Events

• Proposed standard set of events deemed
most relevant for application performance
tuning

• Defined in papiStdEventDefs.h
• Mapped to native events on a given platform

– Run tests/avail to see list of PAPI preset events
available on a platform

High-level Interface

• Meant for application programmers wanting
coarse-grained measurements

• Not thread safe
• Calls the lower level API
• Allows only PAPI preset events
• Easier to use and less setup (additional code)

than low-level

32

High-level API

• C interface
PAPI_start_counters
PAPI_read_counters
PAPI_stop_counters
PAPI_accum_counters
PAPI_num_counters
PAPI_flips
PAPI_ipc

• Fortran interface
PAPIF_start_counters
PAPIF_read_counters
PAPIF_stop_counters
PAPIF_accum_counters
PAPIF_num_counters
PAPIF_flips
PAPIF_ipc

33

Low-level Interface

• Increased efficiency and functionality over the
high level PAPI interface

• About 40 functions
• Obtain information about the executable and

the hardware
• Thread-safe
• Fully programmable
• Callbacks on counter overflow

34

PAPI counters in Tau
• Instead of one metric, profile or trace with more than one metric
• Set environment variables COUNTER[1-25] to specify the metric

% setenv COUNTER1 GET_TIME_OF_DAY
% setenv COUNTER2 PAPI_L2_DCM
% setenv COUNTER3 PAPI_FP_OPS
% setenv COUNTER4 PAPI_NATIVE_<native_event>

• % setenv COUNTER5 P_WALL_CLOCK_TIME …
• When used with –TRACE option, the first counter must be GET_TIME_OF_DAY

% setenv COUNTER1 GET_TIME_OF_DAY
Provides a globally synchronized real time clock for tracing

• -multiplecounters appears in the name of the stub Makefile
• Often used with –papi=<dir> to measure hardware performance counters and time
• papi_native_avail and papi_avail are two useful tools.

35

Important Environment Variables
• Choose the measurement option and compile your code:
• setenv TAU_MAKEFILE $TAU/Makefile.tau-icpc-mpi-pdt
• setenv TAU_OPTIONS ‘-optVerbose -optKeepFiles -optPreProcess’
• setenv TAU_THROTTLE 1 At runtime to keep instrumentation overhead in check

36

Fortran TAU Tips
• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
• % setenv TAU_OPTIONS ‘-optPdtF95Opts=“-R free” -optVerbose ’

• If it uses several module files, you may switch from the default Cleanscape Inc. parser in PDT to the GNU
gfortran parser to generate PDB files:
% setenv TAU_OPTIONS ‘-optPdtGnuFortranParser -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% setenv TAU_OPTIONS ‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:
% setenv TAU_OPTIONS ‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’
% cat mycmd.tau

BEGIN_INSTRUMENT_SECTION
memory file=“foo.f90” routine=“#”
instruments all allocate/deallocate statements in all routines in foo.f90
loops file=“*” routine=“#”
io file=“abc.f90” routine=“FOO”
END_INSTRUMENT_SECTION

37

References
• Performance Research Laboratory, University of Oregon,

Eugene, sameer@cs.uoregon.edu
• http://www.cs.uoregon.edu/research/tau/about.php

38

mailto:sameer@cs.uoregon.edu

	Tau�Introduction
	Outline
	General
	Tau: Measurements
	Tau: Instrumentation
	Slide Number 6
	Tau Example
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Paraprof and Pprof
	Tau Paraprof Overview
	Tau Paraprof Manager Window
	Routine Time Experiment
	Multiply_Matrices Routine Results
	Float Point OPS trial
	L1 Data Cache Miss trial
	Call Path
	Call Path�
	Derived Metrics
	Derived�Metrics
	PAPI Implementation
	PAPI Performance Monitor
	PAPI Preset Events
	High-level Interface
	High-level API
	Low-level Interface
	PAPI counters in Tau
	Important Environment Variables
	Fortran TAU Tips
	References

