Cornell University
Center for Advanced Computing

OpenMP
(with Labs)

Steve Lantz
Senior Research Associate

Cornell University Center for Advanced Computing (CAC)
slantz@cac.cornell.edu

Based on materials developed by Kent Milfeld at TACC

Workshop: High Performance Computing on Stampede, Jan. 14-15, 2015

www.cac.cornell.edu

mailto:your@cac.cornell.edu

Cornell University
Center for Advanced Computing

What is OpenMP?

 OpenMP is an acronym for Open Multi-Processing
* An Application Programming Interface (API) for
developing parallel programs in shared-memory architectures

* Three primary components of the API are:

— Compiler Directives

— Runtime Library Routines

— Environment Variables
* De facto standard -- specified for C, C++, and FORTRAN

« hitp://www.openmp.org/ has the specification, examples, tutorials
and documentation

 OpenMP 4.0 specified July 2013

1/14/2015 www.cac.cornell.edu 2

http://www.openmp.org/
http://www.openmp.org/

Cornell University
Center for Advanced Computing

OpenMP = Multithreading

« All about executing concurrent work (tasks)
— Tasks execute as independent threads
— Threads access the same shared memory (no message passing!)
— Threads synchronize only at barriers

« Simplest way to do multithreading — run tasks on multiple cores/units
— Insert OpenMP parallel directives to create tasks for concurrent threads
— So, shared-memory parallel programming is super-easy with OpenMP?
— Nope! Updates to a shared variable, e.g., need special treatment...

// repetitive work: OK // repetitive updates: oops
#pragma omp parallel for #pragma omp parallel for
for (i=0; i<N; i++) for (i1=0; i<N; i++)

a[i] = b[i] + c[1i]; sum = sum + b[i]*c[i];

1/14/2015 www.cac.cornell.edu 3

Cornell University
Center for Advanced Computing

Role of the Compiler

 OpenMP relies on the compiler to do the multithreading

— Compiler recognizes OpenMP directives, builds in appropriate code
« A special flag is generally required to enable OpenMP

— GNU: gcc -fopenmp

— Intel: icc -openmp
« On Stampede, extra flags may be required for Intel Xeon Phi

— May need to tell the Intel compiler to enable MIC instructions

— Build OpenMP code native to MIC: icc —openmp -mmic

— Offload marked sections to MIC.: icc -openmp

— Must do multithreading to make full use of the Phi!

1/14/2015 www.cac.cornell.edu 4

Cornell University
Center for Advanced Computing

Stampede OpenMP Use Cases

« Two distinct pools of shared memory exist on a Stampede node:
— 32 GB for the Intel Xeon E5 host processors
— 8 GB for the Intel Xeon Phi (MIC) coprocessor
* Thus, many possibilities exist for single-node OpenMP applications:
— Host only: compile for E5, run threads on E5 cores
— MIC only: compile natively for Phi, run threads on Phi cores
— Offload: compile so code runs on E5 but offloaded sections run on Phi
* More possibilities exist for multi-node MPI/OpenMP hybrid codes:

— Symmetric: compile separately for E5 and Phi, launch MPI tasks on
both, spawn local OpenMP threads for all tasks

— Offload: compile for E5, launch all MPI tasks on E5, offload some
OpenMP sections to Phi

1/14/2015 www.cac.cornell.edu 5

Cornell University

Center for Advanced Computing

OpenMP Fork-Join Parallelism

* Programs begin as a single process: master thread

» Master thread executes until a parallel region is encountered
— Master thread creates (forks) a team of parallel threads
— Threads in team simultaneously execute tasks in the parallel region
— Team threads synchronize and terminate (join); master continues

time
] Serial Parallel Serial Parallel Serial
execution @ S @
B
B} o

4 threads ‘\/‘ 4 threads
e.g.,
4-thread

execution Master Thread Multi-Threaded

1/14/2015 www.cac.cornell.edu 6

Cornell University
Center for Advanced Computing

LAB: OMP Hello World

Parallel Region: C/C++ and Fortran

1 |#pragma omp parallel !Somp parallel

2 { code block code block

3 a = work(...); call work(...)

4| } 'Somp end parallel
Line 1 Team of threads is formed at parallel region

Lines 2—-3 Each thread executes code block and subroutine call, no
branching into or out of a parallel region

Line 4 All threads synchronize at end of parallel region (implied
barrier)

1/14/2015 www.cac.cornell.edu 7

Cornell University
Center for Advanced Computing

OpenMP on Shared Memory Systems

Software Model:
Threads in
| Parallel Region

Hardware Model:
Multiple Cores

Thread Thread Thread Thread
1 2 a.out 0 1 2 M-1

Thread Thread Thread Thread
M M+1 M+2 2M-1

= accessible by
all threads

= private memory

for thread x

Cornell University
Center for Advanced Computing

OpenMP Directives

« OpenMP directives are comments in source code that specify
parallelism for shared-memory parallel (SMP) machines

« FORTRAN compiler directives begin with one of the sentinels
I SOMP, CSOMP, or *$SOMP — use ! SOMP for free-format F90

« C/C++ compiler directives begin with the sentinel #pragma omp

Fortran 90 C/C++
1SOMP parallel #pragma omp parallel
{...
ISOMP end parallel }
1SOMP parallel do #pragma omp parallel for
DO ... for(...){...
ISOMP end parallel do }

1/14/2015 www.cac.cornell.edu 9

Cornell University
Center for Advanced Computing

OpenMP Syntax

 OpenMP Directives: Sentinel, construct, and clauses

#pragma omp construct [clause [[,]Jclause]...] C

ISomp construct [clause [[,]clause]...] F90
« Example

#pragma omp parallel private(i) reduction(+:sum) C

ISomp parallel private(i) reduction(+:sum) F90

« Most OpenMP constructs apply to a “structured block”, that is, a
block of one or more statements with one point of entry at the top
and one point of exit at the bottom.

1/14/2015 www.cac.cornell.edu 10

Cornell University
Center for Advanced Computing

OpenMP Constructs

OpenMP language

1/14/2015

www.cac.cornell.edu

“extensions’
parallel Work- control of data synchron- runtime
control sharing one task access ization environment
* governs flow * distributes * assigns * specifies » coordinates * sets/gets environment
of control in work among work to a scoping of execution of
the program threads thread variables threads schedule
omp_set num threads()
do/for task shared critical omp get thread num()
parallel sections directive private atomic OMP_NUM THREADS
directive single (OpenMP 3.0) reduction barrier OMP_SCHEDULE
directives clauses directives clause, API, env. variables

11

Cornell University

Center for Advanced Computing

OpenMP Parallel Directives

* Replicated
» Worksharing

PARALLEL
{code}
END PARALLEL

code code code code

' Replicated

1/14/2015

— executed by all threads
— divided among threads

PARALLEL DO
do I = 1,N*4
{code}
end do
END PARALLEL DO

l

I=1)N |=N+1,2N [=2N+1,3N [=3N+1,4N
cod code code code

Worksharing

www.cac.cornell.edu

PARALLEL
{codel}
DO
do I = 1,N*4
{code2}
end do
{code3}
END PARALLEL

\ 4

code1 code1 code1 code1

4 A 4 Y Y

I=1N 1=N+1,2N 1=2N+1,3N [=3N+1,4N

code2 code2 code?2 code2
Y A A \ 4
code3 code3 code3 code3
v .
Combined

12

Cornell University
Center for Advanced Computing

OpenMP Worksharing

Use OpenMP directives to specify worksharing
In a parallel region, as well as synchronization

#pragma omp parallel | code block Thread action
{ for Worksharing
fpragma omp Sections Worksharing
single One thread
master One thread
| } // end parallel critical One thread at a time
parallel do/for Directives can pe coml?ined,
parallel sections If a parallel region has just

one worksharing construct.

1/14/2015 www.cac.cornell.edu 13

Cornell University
Center for Advanced Computing

Worksharing Loop: C/C++

General form:

1 |#pragma omp parallel for | #ipragma omp parallel

2 for (i=0; i<N; i++) {

3] { #pragma omp for

4 a[i] = b[i] + c[i]; for (i=0; i<N; i++)
S| 1} {a[i] = b[i] + c[i];}
6 }

Line 1 Team of threads formed (parallel region).

Lines 2—6 Loop iterations are split among threads.
Implied barrier at end of block(s) {}.

Each loop iteration must be independent of other iterations.

1/14/2015 www.cac.cornell.edu 14

Cornell University
Center for Advanced Computing

Worksharing Loop: Fortran

General form:

1l |!'Somp parallel do ISomp parallel

2| do i=1,N 1Somp do

3 a(i) = b(i) + c(i) do i=1,N

4 | enddo a(i) = b(i) + c(1i)
5 'Somp end parallel do enddo

6 ISomp end parallel
Line 1 Team of threads formed (parallel region).

Lines 2-5 Loop iterations are split among threads.

Line 5 (Optional) end of parallel loop (implied barrier at enddo).

Each loop iteration must be independent of other iterations.

1/14/2015 www.cac.cornell.edu 15

Cornell University

Center for Advanced Computing

OpenMP Clauses

» Directives dictate what the OpenMP thread team will do
« Examples:

Parallel regions are marked by the parallel directive

— Worksharing loops are marked by do, for directives (Fortran, C/C++)
« Clauses control the behavior of any particular OpenMP directive
« Examples:

1.

a s~ wb

1/14/2015

Scoping of variables: private, shared, default
Initialization of variables: copyin, firstprivate
Scheduling: static, dynamic, guided
Conditional application: if

Number of threads in team: num threads

www.cac.cornell.edu 16

Cornell University
Center for Advanced Computing

LAB: Worksharing Loop

Private, Shared Clauses

* In the following loop, each thread needs a private copy of temp

— The result would be unpredictable if temp were shared, because each
processor would be writing and reading to/from the same location

!Somp parallel do private(temp,i) shared(A,B,C)
do i=1,N
temp = A(i)/B(i)
C(i) = temp + cos(temp)
enddo
!Somp end parallel do

— A “lastprivate(temp)” clause will copy the last loop (stack) value of temp
to the (global) temp storage when the parallel DO is complete

— A "firstprivate(temp)” initializes each thread’s temp to the global value

1/14/2015 www.cac.cornell.edu 17

Cornell University
Center for Advanced Computing

WO r' kS h ar| n g Res u |tS Work-Sharing on Production System
(Lab Example 2)
0.7 3
o \\
Speedup = 8 04 —
. . o 0.3 —
cputime(1) / cputime(N) £ 02 —O— 5
0 T
0 1 2 3 4 5 6 7 8 9
CPUs
If work is Complete|y Work-Sharing on Production System
. . . Lab Example 2
parallel, scaling is linear.
10
8
Scheduling, memory g
contention and overhead i I —
can impact speedup and 0 | | |
Gflop/s rate. ° ? Lol °

1/14/2015 www.cac.cornell.edu 18

Cornell University
Center for Advanced Computing

Overhead to Fork a Thread Team

30000

25000

20000

15000

5000

Clock Periods (1.3GHz P690)

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

10000 A

5 10 15 20
Threads

—e— parallel
—=— parallel_do

* Increases roughly linearly with number of threads

1/14/2015

www.cac.cornell.edu

19

Cornell University
Center for Advanced Computing

Merging Parallel Regions

The I$OMP PARALLEL directive declares an entire region as parallel;
therefore, merging work-sharing constructs into a single parallel region
eliminates the overhead of separate team formations

| SOMP PARALLEL
SOMP PARALLEL DO 1SOMP DO
do i=1,n do i=1,n
a(i)=b(i)+c (1) a(i)=b(i)+c (i)
enddo enddo
'SOMP END PARALLEL DO 1SOMP END DO
SOMP PARALLEL DO l 1SOMP DO
do i=1,m do i=1,m
x(1)=y(i)+z (1) x(1)=y(i)+z (i)
enddo enddo
'SOMP END PARALLEL DO 1SOMP END DO
1SOMP END PARALLEL

1/14/2015 www.cac.cornell.edu 20

Cornell University
Center for Advanced Computing

Thread Memory Access:. Race Conditions

« Every thread accesses “global” or shared memory

— All threads share the same address space except for private variables

— Thus, threads have no need to pass messages like MPI processes...
« But race conditions can occur with shared memory. Examples:

— The last writer “wins”, if no order is imposed on multiple writers

— The reader who “loses” to a writer will acquire the newly-updated value
« A race condition leads to unpredictable results!

— Avoid introducing one; usually it's a bug which is hard to debug
 What do you do to prevent a race condition? Synchronize!

— Impose order with barriers (explicit/implicit synchronization)

— Use mutual exclusion (mutex) directives to protect critical sections,
where one thread must run at a time (at a performance penalty)

1/14/2015 www.cac.cornell.edu 21

Cornell University
Center for Advanced Computing

lllustration of a Race Condition

Intended Possible...
-- | Thread 0 | | Thread 1 | | Value_
read 0

increment 0 read — 0

write — 1 increment read — 0
read <« 1 write — increment 1

increment 1 write — 1

write — 2 1

* In a critical section, need mutual exclusion to get intended result
The following OpenMP directives prevent this race condition:

#pragma omp critical — for a code block (C/C++)
#pragma omp atomic — for single statements

1/14/2015 www.cac.cornell.edu 22

Cornell University
Center for Advanced Computing

OpenMP Reduction

« Recall previous example of parallel dot product
— Simple parallel-for doesn’t work due to race condition on shared sum

— Best solution is to apply OpenMP’s reduction clause
— Doing private partial sums is fine too; add a critical section for sum of ps

// repetitive updates: oops // repetitive updates: OK

#ipragma omp parallel for #pragma omp parallel \
for (i=0; i<N; i++) firstprivate (ps)
sum = sum + b[i]*c[i]; {

#pragma omp for

for (i=0; i<N; i++)
#pragma omp parallel for \ ps = ps + b[i]*c[i];
reduction (+:sum)

for (i=0; i<N; i++)
sum = sum + b[i]*c[i]; sum = sum + ps; }

// repetitive reduction: OK

#pragma omp critical

1/14/2015 www.cac.cornell.edu 23

Cornell University
Center for Advanced Computing

LAB: OMP Functions

Runtime Library Functions

omp_get num_ threads () Number of threads in current team

omp get thread num() Thread ID, {0: N-1}

omp get max threads() Number of threads in environment,
OMP_NUM THREADS

omp _get num procs () Number of machine CPUs

omp in parallel(() True if in parallel region & multiple threads

are executing

omp_set num threads(#) | Changes number of threads for parallel
region, if dynamic threading is enabled

1/14/2015 www.cac.cornell.edu 24

Cornell University
Center for Advanced Computing

Environment Variables, More Functions

« To control the OpenMP runtime environment

OMP_NUM_THREADS Set to permitted number of threads: this is the
value returned by omp get max threads ()

OMP_DYNAMIC TRUE/FALSE for enable/disable dynamic
threading (can also use the function below)

« To enable dynamic thread count (not dynamic scheduling!)

omp set dynamic () | Set state of dynamic threading: if equal to “true”,
omp set num threads () controls thread count

omp get dynamic () | True if dynamic threading is on

1/14/2015 www.cac.cornell.edu 25

Cornell University
Center for Advanced Computing

time

: ' Nested Parallel Region Serial
execution ® SETEl J

Master Thread

OpenMP 3.0 supports nested parallelism, older implementations
may ignore the nesting and serialize inner parallel regions.

A nested parallel region can specify any number of threads to be
used for the thread team, new id’s are assigned.

1/14/2015 www.cac.cornell.edu

Cornell University
Center for Advanced Computing

Additional Topics to Explore...

« Schedule clause: specify how to divide work among threads
schedule (static) schedule (dynamic, M)

* Reduction clause: perform collective operations on shared variables
reduction (+:asum) reduction (*:aprod)

* Nowait clause: remove the barrier at the end of a parallel section
for ... nowait end do nowait

« Lock routines: make mutual exclusion more lightweight and flexible
omp init lock (var) omp set lock(var)

1/14/2015 www.cac.cornell.edu 27

Cornell University
Center for Advanced Computing

Some Programming Models for Intel MIC

* Intel Threading Building Blocks (TBB)
— For C++ programmers
* Intel Cilk Plus
— Task-oriented add-ons for OpenMP
— Currently for C++ programmers, may become available for Fortran
* Intel Math Kernel Library (MKL)
— Automatic offloading by compiler for some MKL features
— MKL is inherently parallelized with OpenMP
e OpenMP

— On Stampede, TACC expects that this is the most interesting
programming model for HPC users

1/14/2015 www.cac.cornell.edu 28

Cornell University
Center for Advanced Computing

MIC Programming with OpenMP

« Compile with the Intel compiler (icc)

 OpenMP pragma is preceded by MIC-specific pragma
— Fortran: 'dir$ omp offload target (mic) <...>
- C: #pragma offload target (mic) <...>

« All data transfer is handled by the compiler
— User control provided through optional keywords

* 1/O can be done from within offloaded region

— Data can “stream” through the MIC; no need to leave MIC to fetch new
data from disk

— Also very helpful when debugging (print statements)
« Specific subroutines can be offloaded, including MKL subroutines

1/14/2015 www.cac.cornell.edu 29

Cornell University
Center for Advanced Computing

use omp 1lib ! OpenMP
Example 1 integer :: n = 1024 ! Size
real, dimension(:,:), allocatable :: a ! Array
.) integer i, 3 ! Index
2'D array (a) |S fl”Gd Wlth real s X ! Scalar
data on the Coprocessor allocate(a(n,n)) ! Allocation
!Somp parallel do shared(a,n), & ! Parallel -
Data hand”ng IS done pri\{ate(x, i, j), schedule(dynamic) ! region
. . do j=1, n
automatically by compiler do i=j, n
i x = real(i + j); a(i,j) = x
« Memory is allocated
on coprocessor for (a) | #inciude <omp.h> /* C example */
e Private variables const int n = 1024; /* Size of the array */
.. d int i, j; /* Index variables */
(l rJ rx) are create float a[n][n], x

* Result is copied back
#pragma omp parallel for shared(a), \

private (x) , schedule (dynamic)
for (i=0;i<kn;i++) {
for (j=i;j<n;j++) {
x = (float) (i + J); al[il[j] = x; }}

1/14/2015 www.cac.cornell.edu 30

Cornell University

Center for Advanced Computing

Example 2

I/O from offloaded region:

» File is opened and
closed by one thread
(omp single)

« All threads take turns
reading from the file
(omp critical)

Threads may also read in

parallel (not shown)

« Parallel file system

 Threads read parts
from different targets

1/14/2015

#pragma omp parallel

{

#pragma omp single /* Open File */

{

printf ("Opening file in offload region\n");
fl = fopen("/var/tmp/mydata/list.dat","r");
}

#pragma omp for
for(i=1;i<n;i++) {
#pragma omp critical
{ fscanf (f1,"%£f",&a[i]) ;}
af[i] = sqrt(a[i]);
}

#fpragma omp single

{
printf ("Closing file in offload region\n");

fclose (£f1);
}

www.cac.cornell.edu 31

Cornell University
Center for Advanced Computing

Example 3

Two routines, MKL’s
sgemm and my sgemm
* Both are called with

directive
* my sgemm Specifies
explicit in and

data movement

Use to
have routine compiled for
the coprocessor, or link
coprocessor-based MKL

1/14/2015

LAB: Hand-Coding vs. MKL

! snippet from the caller...
! offload MKL routine to accelerator

Call sgemm('N','N',n,n,n,alpha,a,n,b,n,beta,c,n)
! offload hand-coded routine with data clauses

call my sgemm(d,a,b)

! snippet from the hand-coded subprogram. ..

subroutine my sgemm(d,a,b)
real, dimension(:,:) :: a, b, d
!Somp parallel do
do j=1, n
do i=1, n
d(i,j) = 0.0
do k=1, n
d(i,j) = d(i,j)+a(i,k)*b(k,])
enddo; enddo; endo
end subroutine

www.cac.cornell.edu 32

Cornell University
Center for Advanced Computing

Heterogeneous Threading, Sequential

#pragma omp parallel
MPI process, (C/C++
master thread #pragma omp single
{ offload(); !
Generate
parallel region #pragma omp for
for (i=0; i<N; i++){...!
offload :
single .
<\/> idle '
threads PIEHD) [(L F90
!Somp single
call offload() ;
!Somp end single
workshare
!Somp do
on epu do i=1,N; ...
- A end do
wait !Somp end parallel

1/14/2015 www.cac.cornell.edu 33

Cornell University

Center for Advanced Computing

Heterogeneous Threading, Concurrent

MPI process,
master thread

offload
single
nowait

assist when
done in single

1/14/2015

Generate
parallel region

wait

workshare
on cpu

#pragma omp parallel C/C++
{
#pragma omp single nowait
{ offload(); }

#pragma omp for schedule (dynamic)
for (i=0; i<N; i++){...!}
}

!Somp parallel F90
!Somp single
call offload() ;
!Somp end single nowait

!Somp do schedule (dynamic)
do i=1,N;
end do
!Somp end parallel

www.cac.cornell.edu 34

