
Introduction to Python

1 Introduction to Python

Chris Myers

Cornell University Center for Advanced Computing (CAC)
and
Cornell Department of Physics / Laboratory of Atomic & Solid State Physics (LASSP)

https://cac.cornell.edu/myers

c.myers@cornell.edu

Python is at least 3 things:

• A programming language
– Syntax, keywords, data types, objects, operators, variables, etc.

• A software ecosystem
– Python Standard Library + many thousands of third-party packages for different tasks

• A program that runs code written in the Python language
– An interpreter

2 Outline

• python as a program
• Python as a programming language
• Python as a software ecosystem

1

3 python as a program

3.1 Compiled vs. Interpreted Languages

• Compiled languages (e.g., C/C++, Fortran, Java, . . .): processed by a compiler to produce
an executable or standalone application that can be run

• Interpreted languages (e.g., Python, R, MATLAB, Perl, . . .): processed by another program
— an interpreter — that runs and executes program statements

3.2 Python interpreters

• python: the default/reference Python interpreter — formally known as CPython, and some-
times installed as python3

• ipython: an interpreter sitting on top of python (and written in Python), providing additional
functionality for interactive work

• jupyter: a notebook-based software system that can process Python code by leveraging the
ipython kernel (as well as kernels for other languages, such as R and Julia)

• various integrated development environments (IDEs) bundling code editors, ipython consoles,
etc.

• other non-CPython-based interpreters that are not widely used: IronPython, PyPy, etc.

3.3 Python interpreters in action

• python my_program.py: especially useful for running in background or in batch submission
systems

• ipython: an enhanced console with additional “magic” functionality to support interactive
access

• jupyter lab and jupyter notebook: web-based environments merging code, documentation,
graphics, and results

[1]: 2 + 2

[1]: 4

[2]: 'abc' + 'def'

2

[2]: 'abcdef'

[3]: # A nice trick I learned from Chris Cameron's last seminar on JupyterLab

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

I will also turn off pretty-printing

%pprint

Pretty printing has been turned OFF

3.3.1 Installing Python and associated packages

• Your machine might already have a version of Python installed — best to leave that one alone
(probably being used for sysadmin)

• Anaconda Python Distribution: installs a large collection of packages by default

• Alternatively, install a minimal distribution and create customized environments for different
projects

• Miniconda

– conda create -n my_env python numpy pandas jupyter ; conda activate my_env

• Python Virtual Environment

– python -m venv my_env ; source my_env/bin/activate ; pip install numpy pandas
jupyter

4 Python as a programming language

• General-purpose
• Object-oriented
• Dynamically typed
• Interpreted
• Extensible

4.1 A little bit of history

• Python was created by Guido van Rossum in the very late 1980s and early 1990s
• The language is named after the comedy group Monty Python, not the big snake
• The scientific computing community was an early adopter of Python

– abstractions and objects for complex scientific/numerical concepts
– interfacing to existing code written other languages
– scripting and steering complex computations and workflows
– gluing together different sorts of analyses

• In addition to being a very popular programming language, Python has inspired some impor-
tant software memes and themes

3

– “If Guido was hit by a bus?” — led to the creation of processes and standards for Python’s
evolution

– “Benevolent Dictator for Life” (BDFL) — Guido’s role as final arbiter of language deci-
sions

4.2 Python as a general-purpose language

• Not constructed to support a specific problem domain
– R: built to support statistical analysis
– MATLAB (“Matrix Laboratory”): built to support linear algebra and matrix operations
– Mathematica: built to support symbolic mathematics

• Much useful functionality for specific application areas is available through third-party pack-
ages

• The Python language is the substrate for tying all these pieces together
• Python is well-designed, intuitive, readable, practical, expressive, elegant, free, and open-

source

4.3 Python as an object-oriented language

• Object-oriented means:
– support for bundling together data and functions into complex data “objects”
– support for defining new data types (classes) representing different abstractions useful

for different problem domains
∗ arrays, dataframes, networks, models, estimators, figures, etc.

• Python is practical and not strict — also supports procedural and functional programming
• Everything in Python is an object

– a type
– a value
– some attributes (data defined in association with objects)
– some methods (functions defined in association with objects)
– a namespace that organizes attributes and methods

4.3.1 Everything in Python is an object

• 2+2 -> (2).__add__(2) # where the + operator results in a call to the method int.__add__
• 'abc' + 'def' produces the string ‘abcdef’, where the + operator calls the method
str.__add__

• the dot operator accesses elements in an object’s namespace

[4]: # the built-in function dir() returns a list of names in a namespace

dir(2)

[4]: ['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',
'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__',
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__',
'__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__',
'__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__',

4

'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__',
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__',
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__',
'__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'as_integer_ratio',
'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator',
'real', 'to_bytes']

4.4 Python as a dynamically typed language

• variables acquire the type of whatever is assigned to them
– x = 3 # x is an integer (int)
– x = 3.14 # x is a floating-point number (float)
– x = "Hello, world" # x is a string

• as compared to statically typed languages, where the types of variables are declared, and errors
are reported if data of a different type are assigned to a variable

• dynamic typing is often used in interpreted languages
• static typing is often used in compiled languages

4.5 Python as an interpreted language

• processed by an interpreter
– the python interpreter (CPython) does on-the-fly compilation to intermediate bytecodes

• each statement executed sequentially
• very useful for interactive analysis, development, and prototyping
• programs are typically slower than for compiled languages

– trading off development time vs. execution time

4.6 Python as an extensible language

• The Python language defines a C/Python Application Programming Interface (API)
• C/Python API enables the CPython interpreter to process compiled code written in C and

other languages and to make the associated data and functions accessible in a Python program
• Many programs written in the Python language are actually calling compiled functions written

in other languages, resulting in much higher computational performance than for pure Python
code alone

• Many tools exist for generating interfaces to compiled code, compiling bits of Python code to
“extension modules”, etc.

• See our Cornell Virtual Workshop (CVW) topic on Python for High Performance at
https://cvw.cac.cornell.edu/python

4.7 Built-in data types in Python

• numeric types: int, float, complex, bool
• string data types
• containers: lists, dictionaries, sets, tuples
• functions
• classes

5

• modules
• etc.

4.8 Built-in container types in Python

• lists: ordered, mutable sequences of objects, indexed by their integer position (starting at 0)
• dictionaries: mappings from a set of keys to associated values (akin to maps, hashes, asso-

ciative arrays, etc.)
• sets: unordered collections of unique elements with support for set algebra (unions, intersec-

tions, differences, etc.)
• tuples: ordered, immutable sequences of objects, useful for bundling together related items
• strings: ordered, immutable sequences of characters, supporting many string-processing op-

erations

Along with many other non-built-in container types defined in external packages, such as:

• arrays (of any dimensionality) — defined in numpy
• series and dataframes — defined in pandas

4.9 Python as a calculator

• addition + ; subtraction - ; multiplication * ; division /
• power ** ; modulo % ; floor division //

[5]: (19 + (2*3 - 4*7) / (8 % 3))**3

[5]: 512.0

[6]: x = 3
y = 14

z = (x * y) - (x + y)

z

[6]: 25

4.10 Code blocks and indentation

The readability of Python code is a key goal of its design. Using indentation to identify code blocks
is central to that goal. Using a code editor that understands Python syntax and indentation helps
a lot.

Python:

C/C++:

4.11 Code blocks and indentation (continued)

Python:

6

MATLAB:

4.12 Control flow

• Looping: for, while, continue, break
• Branching: if-elif-else
• Exception handling: try-except

4.13 Iteration and iterables

[7]: for c in ['A', 'B', 'C', 'D', 'E']:
print(c)

A
B
C
D
E

[8]: for i in range(10):
print(i)

0
1
2
3
4
5
6
7
8
9

[9]: print(range(10))

range(0, 10)

[10]: range?

[11]: for i in range(4, 17, 3):
print(i)

4
7
10
13
16

7

[12]: list(range(10))

[12]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[13]: sum(range(10))

[13]: 45

4.14 Iterating over other iterables

[14]: a_dictionary = {'A': 1, 'B': 2, 'C': 3}

for key,value in a_dictionary.items():
print(key, value)

A 1
B 2
C 3

4.15 Comprehensions

[15]: # List comprehensions

squares = [n*n for n in range(10)]

squares

[15]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

[16]: # Dictionary comprehensions

import string
mapping = {c:i for i,c in enumerate(string.ascii_letters)}

mapping

[16]: {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9,
'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18,
't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25, 'A': 26, 'B': 27,
'C': 28, 'D': 29, 'E': 30, 'F': 31, 'G': 32, 'H': 33, 'I': 34, 'J': 35, 'K': 36,
'L': 37, 'M': 38, 'N': 39, 'O': 40, 'P': 41, 'Q': 42, 'R': 43, 'S': 44, 'T': 45,
'U': 46, 'V': 47, 'W': 48, 'X': 49, 'Y': 50, 'Z': 51}

8

4.16 Exceptions and error handling

[17]: for denominator in [5,4,3,2,1,0]:
print(1 / denominator)

0.2
0.25
0.3333333333333333
0.5
1.0

ZeroDivisionError Traceback (most recent call last)
Input In [17], in <cell line: 1>()

1 for denominator in [5,4,3,2,1,0]:
----> 2 print(1 / denominator)

ZeroDivisionError: division by zero

[18]: for denominator in [5,4,3,2,1,0]:
try:

print(1 / denominator)
except ZeroDivisionError:

print("Cannot divide by 0")

0.2
0.25
0.3333333333333333
0.5
1.0
Cannot divide by 0

4.17 Exceptions and error handling (continued)

[]: #filename = 'a_file_that_does_not_exist.txt'
#inputfile = open(filename, 'r')
#lines = inputfile.readlines()
#inputfile.close()

[19]: filename = 'a_file_that_does_not_exist.txt'
try:

inputfile = open(filename, 'r')
lines = inputfile.readlines()
inputfile.close()

except FileNotFoundError:
print(f'{filename} does not exist')

9

a_file_that_does_not_exist.txt does not exist

4.18 Defining functions

[20]: # def is keyword to define a new function; return is keyword to return a value␣
↪→from a function

def concatenate(string1, string2, separator=' '):
return string1 + separator + string2

concatenate('abc', 'def') # uses default argument for separator

concatenate('abc', 'def', '..') # overrides default argument

concatenate(separator='--', string2='DEF', string1='ABC') # uses keyword␣
↪→arguments

[20]: 'abc def'

[20]: 'abc..def'

[20]: 'ABC--DEF'

10

4.19 Putting the pieces together: Spelling Bee

11

[21]: # spellingbee.py

import itertools

available = 'BEILNTU'
center = available[0]

start = 'BL'
length = 5
exclude = {'II', 'UU', 'BBB', 'TTT', 'NNN', 'LLL', 'EEE'}

def words(available, start, length):
num_unknown = length - len(start)
iterator = itertools.product(available, repeat=num_unknown)
return [start + ''.join(letters) for letters in iterator]

allwords = words(available, start, length)

for w in allwords:
not_excluded = True
for ex in exclude:

if ex in w:
not_excluded = False

if not_excluded and center in w:
print(w)

BLBBE
BLBBI
BLBBL
BLBBN
BLBBT
BLBBU
BLBEB
BLBEE
BLBEI
BLBEL
BLBEN
BLBET
BLBEU
BLBIB
BLBIE
BLBIL
BLBIN
BLBIT
BLBIU
BLBLB

12

BLBLE
BLBLI
BLBLL
BLBLN
BLBLT
BLBLU
BLBNB
BLBNE
BLBNI
BLBNL
BLBNN
BLBNT
BLBNU
BLBTB
BLBTE
BLBTI
BLBTL
BLBTN
BLBTT
BLBTU
BLBUB
BLBUE
BLBUI
BLBUL
BLBUN
BLBUT
BLEBB
BLEBE
BLEBI
BLEBL
BLEBN
BLEBT
BLEBU
BLEEB
BLEEI
BLEEL
BLEEN
BLEET
BLEEU
BLEIB
BLEIE
BLEIL
BLEIN
BLEIT
BLEIU
BLELB
BLELE
BLELI

13

BLELL
BLELN
BLELT
BLELU
BLENB
BLENE
BLENI
BLENL
BLENN
BLENT
BLENU
BLETB
BLETE
BLETI
BLETL
BLETN
BLETT
BLETU
BLEUB
BLEUE
BLEUI
BLEUL
BLEUN
BLEUT
BLIBB
BLIBE
BLIBI
BLIBL
BLIBN
BLIBT
BLIBU
BLIEB
BLIEE
BLIEI
BLIEL
BLIEN
BLIET
BLIEU
BLILB
BLILE
BLILI
BLILL
BLILN
BLILT
BLILU
BLINB
BLINE
BLINI

14

BLINL
BLINN
BLINT
BLINU
BLITB
BLITE
BLITI
BLITL
BLITN
BLITT
BLITU
BLIUB
BLIUE
BLIUI
BLIUL
BLIUN
BLIUT
BLLBB
BLLBE
BLLBI
BLLBL
BLLBN
BLLBT
BLLBU
BLLEB
BLLEE
BLLEI
BLLEL
BLLEN
BLLET
BLLEU
BLLIB
BLLIE
BLLIL
BLLIN
BLLIT
BLLIU
BLLNB
BLLNE
BLLNI
BLLNL
BLLNN
BLLNT
BLLNU
BLLTB
BLLTE
BLLTI
BLLTL

15

BLLTN
BLLTT
BLLTU
BLLUB
BLLUE
BLLUI
BLLUL
BLLUN
BLLUT
BLNBB
BLNBE
BLNBI
BLNBL
BLNBN
BLNBT
BLNBU
BLNEB
BLNEE
BLNEI
BLNEL
BLNEN
BLNET
BLNEU
BLNIB
BLNIE
BLNIL
BLNIN
BLNIT
BLNIU
BLNLB
BLNLE
BLNLI
BLNLL
BLNLN
BLNLT
BLNLU
BLNNB
BLNNE
BLNNI
BLNNL
BLNNT
BLNNU
BLNTB
BLNTE
BLNTI
BLNTL
BLNTN
BLNTT

16

BLNTU
BLNUB
BLNUE
BLNUI
BLNUL
BLNUN
BLNUT
BLTBB
BLTBE
BLTBI
BLTBL
BLTBN
BLTBT
BLTBU
BLTEB
BLTEE
BLTEI
BLTEL
BLTEN
BLTET
BLTEU
BLTIB
BLTIE
BLTIL
BLTIN
BLTIT
BLTIU
BLTLB
BLTLE
BLTLI
BLTLL
BLTLN
BLTLT
BLTLU
BLTNB
BLTNE
BLTNI
BLTNL
BLTNN
BLTNT
BLTNU
BLTTB
BLTTE
BLTTI
BLTTL
BLTTN
BLTTU
BLTUB

17

BLTUE
BLTUI
BLTUL
BLTUN
BLTUT
BLUBB
BLUBE
BLUBI
BLUBL
BLUBN
BLUBT
BLUBU
BLUEB
BLUEE
BLUEI
BLUEL
BLUEN
BLUET
BLUEU
BLUIB
BLUIE
BLUIL
BLUIN
BLUIT
BLUIU
BLULB
BLULE
BLULI
BLULL
BLULN
BLULT
BLULU
BLUNB
BLUNE
BLUNI
BLUNL
BLUNN
BLUNT
BLUNU
BLUTB
BLUTE
BLUTI
BLUTL
BLUTN
BLUTT
BLUTU

18

[22]: %whos

Variable Type Data/Info

InteractiveShell MetaHasTraits <class
'IPython.core.inte<...>eshell.InteractiveShell'>
a_dictionary dict n=3
allwords list n=343
available str BEILNTU
c str E
center str B
concatenate function <function concatenate at 0x10749dee0>
denominator int 0
ex str LLL
exclude set {'II', 'BBB', 'UU', 'NNN', 'EEE', 'TTT',
'LLL'}
filename str a_file_that_does_not_exist.txt
i int 16
itertools module <module 'itertools' (built-in)>
key str C
length int 5
mapping dict n=52
not_excluded bool False
squares list n=10
start str BL
string module <module 'string' from
'/U<...>lib/python3.9/string.py'>
value int 3
w str BLUUU
words function <function words at 0x10749de50>
x int 3
y int 14
z int 25

5 Python as a software ecosystem

• The core Python language provides a substrate
– for using programming constructs to define functions, classes, and control flows
– for importing and using functions and classes defined in external packages

• Actually, Python consists of multiple ecosystems used for different tasks
– a scripting environment used in operating systems and for systems administration tasks
– a set of tools for web programming and website development
– a set of packages for generation of graphical user interfaces (GUIs)
– an environment for scientific computing, data science, and machine learning

• Python Standard Library: https://docs.python.org/3/library/index.html

19

5.1 Python for Scientific Computing, Data Science, and Machine Learning

5.1.1 NumPy (Numerical Python)

• multidimensional arrays (ndarray = “N-dimensional array”)
• “array syntax” enabling compact expressions and efficient computations
• access to functionality for linear algebra and random numbers
• a substrate for array-based computations throughout the Python ecosystem
• similar in spirit to the role that arrays/matrices play in MATLAB

– see https://numpy.org/doc/stable/user/numpy-for-matlab-users.html

20

5.1.2 Numpy

[23]: import numpy as np

x = np.array([[1,2,3], [4,5,9], [7,8,9]])
y = np.random.random((3,3))

w = 3*x + 4*y

x
y
w

x.sum(axis=0)

[23]: array([[1, 2, 3],
[4, 5, 9],
[7, 8, 9]])

[23]: array([[0.61288401, 0.91090789, 0.56815764],
[0.30120234, 0.9396962 , 0.06910196],
[0.91803854, 0.85746682, 0.06649826]])

[23]: array([[5.45153604, 9.64363156, 11.27263056],
[13.20480935, 18.7587848 , 27.27640783],
[24.67215416, 27.42986727, 27.26599303]])

[23]: array([12, 15, 21])

5.1.3 SciPy (Scientific Python)

• Special functions (scipy.special)
• Integration (scipy.integrate)
• Optimization (scipy.optimize)
• Interpolation (scipy.interpolate)
• Fourier Transforms (scipy.fft)
• Signal Processing (scipy.signal)
• Linear Algebra (scipy.linalg)
• Sparse eigenvalue problems with ARPACK
• Compressed Sparse Graph Routines (scipy.sparse.csgraph)
• Spatial data structures and algorithms (scipy.spatial)
• Statistics (scipy.stats)
• Multidimensional image processing (scipy.ndimage)
• File IO (scipy.io)

5.1.4 Pandas

• DataFrames and Series for dealing with tabular data (e.g., spreadsheets)

21

– uses NumPy underneath for much of the data processing
• Support for:

– reading from csv/excel files and SQL databases (and dealing with missing data)
– adding new columns derived from existing columns
– groupby functions that perform aggegrate computations over subsets of data
– lots more

See our Cornell Virtual Workshop (CVW) topic on Python for Data Science:

• Data Processing and Visualization: https://cvw.cac.cornell.edu/pydatasci1
• Data Modeling and Machine Learning: https://cvw.cac.cornell.edu/pydatasci2

5.2 Python for Data Visualization

• Tools for generating figures and images
– Matplotlib: the cornerstone and workhorse of the Python data visualization universe

∗ Pandas: uses Matplotlib for visualizing data from DataFrames
∗ Seaborn: uses Matplotlib with a focus on statistical distributions and multivariate

relationships
∗ Statsmodels: uses Matplotlib for plotting results of statistical modeling (e.g., regres-

sions)
– Plotnine: a Python implementation of the “grammar of graphics” (R/gpplot2)

• Tools for generating interactive data visualizations

22

– Bokeh, Plotly, Altair
• Tools for 3D visualization of 3D objects

– VTK, Paraview, Mayavi

5.2.1 Plotting with matplotlib

[24]: import pandas as pd
from bokeh.sampledata.autompg import autompg_clean as df

df.head()

[24]: mpg cyl displ hp weight accel yr origin \
0 18.0 8 307.0 130 3504 12.0 70 North America
1 15.0 8 350.0 165 3693 11.5 70 North America
2 18.0 8 318.0 150 3436 11.0 70 North America
3 16.0 8 304.0 150 3433 12.0 70 North America
4 17.0 8 302.0 140 3449 10.5 70 North America

name mfr
0 chevrolet chevelle malibu chevrolet
1 buick skylark 320 buick
2 plymouth satellite plymouth
3 amc rebel sst amc
4 ford torino ford

[25]: import matplotlib.pyplot as plt

plt.scatter(df.weight, df.mpg, color='red')
plt.title('MPG vs Weight');

23

5.2.2 Interative plotting with bokeh

[26]: from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource
from bokeh.io import output_notebook
output_notebook()

p = figure()

source = ColumnDataSource(df)
hover_tips = [(c, "@"+c) for c in source.column_names]

p = figure(tools='pan,box_zoom,hover,reset', tooltips = hover_tips, width=400,␣
↪→height=400)

p.circle(x='weight', y='mpg', source=source, size=10, color='green', alpha=0.5)
p.xaxis.axis_label = 'weight'
p.yaxis.axis_label = 'mpg'

show(p)

24

[26]: GlyphRenderer(id='1066', ...)

5.3 Python for Machine Learning and Deep Learning

• Scikit-learn (sklearn)
– a large variety of algorithms and lots of documentation about different ML methods
– classification, regression, clustering, dimensionality reduction, model selection, etc.
– estimators, pre-processors, transformers, pipelines

• Deep Learning with Neural Networks
– TensorFlow / Keras ; PyTorch ; Caffe
– widely used for a broad array of tasks, such as image classification, speech recognition,

text generation, protein structure prediction, etc.
– packages extend numpy-like arrays with the power of automatic differentation to support

gradient computations and backpropagation for use in training neural networks

5.4 Accelerating Python Code (Python and Performance)

5.4.1 Array operations with NumPy

[]: import numpy as np
a = np.random.random((1000,1000))
b = np.random.random((1000,1000))

c = a + b # throws ValueError if a and b not the same shape

25

[]: %%timeit

c = a + b

[]: %%timeit

assert(a.shape == b.shape) # throws AssertionError if a and b not the same shape
c = np.zeros_like(a) # prefills a zero array of the correct shape

for i in range(a.shape[0]):
for j in range(a.shape[1]):

c[i,j] = a[i,j] + b[i,j]

[]: # Speedup?

5.5 An Introduction to Python and an overview of possible future topics

• Introduction to Python
• Python for Scientific Computing and Data Science
• Python for Data Visualization
• Python for Machine Learning and Deep Learning
• Accelerating Python Code

6 Python as a language and an ecosystem

• An expressive programming language for crafting custom analyses and workflows
• A rich set of interoperating packages and libraries for processing data and investigating com-

plex systems

6.1 Any Questions?

[]:

7 Supplemental material

7.1 Putting the pieces together: Ciphers

[]: letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
cipher = {letters[i]: letters[(i-3) % len(letters)] for i in range(len(letters))}

cipher

[]: def transform_message(message, cipher):
tmsg = ''
for c in message:

tmsg = tmsg + cipher.get(c, c)

26

return tmsg

test = "I come to bury Caesar, not to praise him."

transform_message(test, cipher)

decoder = {v:k for k,v in cipher.items()}

transform_message(transform_message(test, cipher), decoder)

7.2 Compiled extension modules

7.2.1 Plotting with pandas (and tweaking with matplotlib)

[]: df.plot.scatter(x="weight", y="mpg", color='blue')
plt.title('MPG vs Weight');

27

	Introduction to Python
	Outline
	python as a program
	Compiled vs. Interpreted Languages
	Python interpreters
	Python interpreters in action
	Installing Python and associated packages

	Python as a programming language
	A little bit of history
	Python as a general-purpose language
	Python as an object-oriented language
	Everything in Python is an object

	Python as a dynamically typed language
	Python as an interpreted language
	Python as an extensible language
	Built-in data types in Python
	Built-in container types in Python
	Python as a calculator
	Code blocks and indentation
	Code blocks and indentation (continued)
	Control flow
	Iteration and iterables
	Iterating over other iterables
	Comprehensions
	Exceptions and error handling
	Exceptions and error handling (continued)
	Defining functions
	Putting the pieces together: Spelling Bee

	Python as a software ecosystem
	Python for Scientific Computing, Data Science, and Machine Learning
	NumPy (Numerical Python)
	Numpy
	SciPy (Scientific Python)
	Pandas

	Python for Data Visualization
	Plotting with matplotlib
	Interative plotting with bokeh

	Python for Machine Learning and Deep Learning
	Accelerating Python Code (Python and Performance)
	Array operations with NumPy

	An Introduction to Python and an overview of possible future topics

	Python as a language and an ecosystem
	Any Questions?

	Supplemental material
	Putting the pieces together: Ciphers
	Compiled extension modules
	Plotting with pandas (and tweaking with matplotlib)

