
Parallel Large-Scale Visualization

Aaron Birkland

Cornell Center for Advanced Computing

Data Analysis on Ranger

January 2012

Parallel Visualization

• Why? Performance

– Processing may be too slow on one CPU
• Interactive visualization requires real-time frame rates

• Use lots of CPUs

• Shared-memory/multicore or distributed

– Data may be too big for available node
• Virtual memory works, but paging is slow

• Use lots of nodes to increase physical memory size

• Big shared-memory/multicore scaling is costly ($/CPU)

Increase interactivity or feasibility

1/20/2012 2

Memory Utilization

• Some visualization techniques cause memory use
to skyrocket!

1/20/2012 3

Memory Utilization: Regular Grids

• Specified by:

– (x,y,z) origin

– (nx, ny, nz) counts

– Data array

• Requires very little
memory

1/20/2012 4

Memory Utilization: Regular Grids

• Chop off corner -> need
an unstructured grid to
represent data points

• Specified by
– Explicit list of vertices

– Explicit list of triangles

• Memory use can go up
many times

1/20/2012 5

Memory Utilization: examples

• Mummy.vtk:

– Structured Grid

– (128x128x128)

– 2MB raw data

• Contour: 7MB

– Polygonal Mesh

• Slice of Contour: .1MB

• Tetrahedralize: 520MB!!

– Unstructured Grid

– Data points ->
Tetrahedrons

1/20/2012 6

Visualization scales with HPC

• Large data produced by large simulations require large
visualization machines and produce large visualization
results

• Data and all derivations in memory,

 cumulative!

HPC data Visualized data

High Res

1x 10x-100x +
Low Res

1/20/2012 7

TACC Parallel Visualization Systems

Spur, Longhorn

1/20/2012 8

TACC Parallel Visualization Systems

• Spur

– 8 nodes, 1 TB total aggregate memory

– 16 cores per node (128 total)

– 4 GPUs per node (32 total)

– DDR (dual data rate) Infiniband interconnect

• Longhorn
– 256 nodes, 14.5 TB total aggregate memory!

– 8 cores per node (2048 total)

– 2 GPUs per node (512 total)

– QDR (quad data rate) Infiniband interconnect

1/20/2012 9

Longhorn Configuration

• 256 Dell Quad Core Intel Nehalem Nodes

– 240 Nodes

• Dual socket, quad core per socket: 8 cores/node

• 48 GB shared memory/node (6 GB/core)

• 73 GB Local Disk

• 2 Nvidia GPUs/node (FX 5800 - 4GB RAM)

– 16 Nodes

• Dual socket, quad core per socket: 8 cores/node

• 144 GB shared memory/node (18 GB/core)

• 73 GB Local Disk

• 2 Nvidia GPUs/node (FX 5800 – 4GB RAM)

• Direct Connection to Ranger’s Lustre Parallel File System

• 10G Connection to 210 TB Local Lustre Parallel File System

1/20/2012 10

Parallel Visualization: Task Parallelism

• Divide the overall workflow into tasks that can happen
independently and, hence, concurrently

• Usually does not scale well in practice

1 2 3 4 5

1 Read file 1 Isosurface 1 Cut Plane 1

2 Read file 2 Streamlines 2 Render

3 Read file 3 Triangulate 3 Decimate 3 Glyph 3

Timesteps

P
ro

c
e
s
s
e
s

1/20/2012 11

Parallel Visualization: Pipeline Parallelism

• Useful when processes have different/specialized
resources

• Bottlenecks if one stage is particularly slow

1 2 3 4 5

1 Read file 1 Read file 2 Read File 3

2 Isosurface 1 Isosurface 2 Isosurface 3

3 Render 1 Render 2 Render 3

Timesteps

P
ro

c
e
s
s
e
s

1/20/2012 12

Parallel Algorithms: Data Parallelism

Data parallelism
Data set is partitioned among the processes and all processes

execute same operations on the data.

Scales well as long as the data and operations can be decomposed.

1 2 3

1 Read

partition 1

Isosurface

partition 1

Render

partition 1

2 Read

partition 2

Isosurface

partition 2

Render

partition 2

3 Read

partition 3

Isosurface

partition 2

Render

partition 3

Timesteps

P
ro

c
e

s
s
e
s

1/20/2012 13

Parallel Algorithms: What doesn’t work

• Streamlines!

– Not data-parallel

– Partial streamlines must be passed from processor to
processor as the streamline moves from partition to partition

– No more parallelism available than the number of
streamlines!

– If >1 streamlines pass through the same partition, you may
not even get that

1/20/2012 14

Parallel Data Management

• Data must be distributed across parallel processes to take
advantage of resources

• Explicit Parallel formats use separate files for partitions

• Implicit parallel formats have a structure where data
partitions can be deduced from file structure
– .vtk legacy, silo, raw

• Non-parallel formats need to be read serially and
distributed in order to be used in parallel
– Overhead!

– Vtk xml formats (.vtu, .vti, etc)

1/20/2012 15

Parallel Data Management

• Read the manual!

– Vis software has varying support for file formats

– True parallel I/O may not be implemented for some formats

– Vis software will try to “hide” it’s failings

• Example: ParaView (from FAQ)

– Currently there are only a few readers that truly work in
parallel: VTK files (not legacy), partitioned legacy VTK files,
ParaView data files, HDF5 files, EnSight master server files,
and raw (binary) files can be read in parallel. For
demonstration purposes, ParaView will distribute pieces of a
data set when the reader cannot. Unfortunatley, this is an
inefficient process.

1/20/2012 16

Rendering

• Many graphics primitives spread out over nodes

• Rendering solutions

– 1. Gather triangles onto one node, render there
• Best when there’s not a lot of data to render

– 2. Render triangles in place, gather and Z-composite the
results

• Best when there is a lot of data to render

• Overhead is almost independent of data size

• VisIt and ParaView both do it both ways

– User controls threshold, but both apps aim for reasonable
defaults

1/20/2012 17

