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1. Lustre 
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Lustre Components 

• All Ranger file systems are Lustre, which is a globally available 

distributed file system. 

• Primary components are the MDS and OSS nodes.  The OSSs 

contain the data, while the MDS contains the filename-to-object map. 

http://wiki.lustre.org/manual/LustreManual18_HTML/IntroductionToLustre.html#50651242_pgfId-1287192 
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Parts of the Lustre System 

• The client (you) must talk to both the MDS and OSS servers in order 

to use the Lustre system. 

• File I/O goes to one or more OSS’s.  Opening files, listing directories, 

etc. go to the MDS. 

• Front end to the 

Lustre file system is 

a Logical Object 

Volume (LOV) that 

simply appears like 

any other large 

volume that would be 

mounted on a node. 
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Lustre File System and Striping 

• Striping allows parts of files to be stored on different OSTs, in a 

RAID-0 pattern. 

– The number of objects is called the stripe_count. 

– Objects contain "chunks" of data that can be as large as stripe_size. 
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Benefits of Lustre Striping 

• Due to striping, the Lustre file system scales with the number of 

OSS’s available. 

• The capacity of a Lustre file system equals the sum of the capacities 

of the storage targets.  

– Benefit #1: max file size is not limited by the size of a single target. 

– Benefit #2: I/O rate to a file is the of the aggregate I/O rate to the objects. 

• Ranger provides 72 Sun I/O nodes, with an nominal data rate that 

approaches 50GB/s, but this speed is split by all users of the system. 

• Metadata access can be a bottleneck, so the MDS needs to have 

especially good performance (e.g., solid state disks on some 

systems). 
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Lustre File System (lfs) Commands 

• Among various lfs commands are lfs getstripe and lfs setstripe. 

• The lfs setstripe command takes four arguments: 
 

 lfs setstripe 

  <file|dir> -s <bytes/OST> -o <start OST> -c <#OSTs> 
 

1. File or directory for which to set the stripe.  

2. The number of bytes on each OST, with k, m, or g for KB, MB or GB.  

3. OST index of first stripe (-1 for filesystem default) . 

4. Number of OSTs to stripe over. 

 

• So to stripe across two OSTs, you would call: 
 

 lfs setstripe bigfile -s 4m -o -1 -c 2 
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Getting Properties of File Systems and Files 

• There are lfs commands to tell you the quotas and striping for Lustre 

file systems and files.  Get the quota for $WORK with 
 

 lfs quota $WORK 
 

• To see striping, try creating a small file and then using lfs to get its 

stripe information. 
 

 ls > file.txt 

 lfs getstripe file.txt 

 

• The listing at the end of the results shows which OSTs have parts of 

the file. 
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A Striping Test to Try 

• You can set striping on a file or directory with the lfs setstripe 

command. First set it for a file: 
 

 lfs setstripe stripy.txt -s 4M -o -1 -c 6 

 ls -la > stripy.txt 

 lfs getstripe stripy.txt 
 

• Now try the same thing for a directory. First create a directory, then 

set its striping, then make a file within that directory. 
 

 mkdir s; cd s; lfs setstripe . -s 4M -o -1 -c 6 

 ls -la > file.txt 

 lfs getstripe file.txt 
 

• In both cases, you should see the file striped across six OSTs.  
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2. Parallel I/O (MPI-2) 
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Parallel I/O with MPI-IO 

• Why parallel I/O? 

– I/O was lacking from the MPI-1 specification 

– Due to need, it was defined independently, then subsumed into MPI-2 

• What is parallel I/O?  It occurs when: 

– multiple MPI tasks can read or write simultaneously, 

– from or to a single file, 

– in a parallel file system, 

– through the MPI-IO interface. 

• A parallel file system works by: 

– appearing as a normal Unix file system, while 

– employing multiple I/O servers (usually) for high sustained throughput. 
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MPI-IO Advantages 

• Two common alternatives to parallel MPI-IO are: 

1. Rank 0 accesses a file; it gathers/scatters file data from/to other ranks. 

2. Each rank opens a separate file and does I/O to it independently. 

• Alternative I/O schemes are simple enough to code, but have either 

1. Poor scalability (e.g., the single task is a bottleneck) or 

2. File management challenges (e.g., files must be collected from local 

disk). 

• MPI-IO provides 

– mechanisms for performing synchronization, 

– syntax for data movement, and 

– means for defining noncontiguous data layout in a file (MPI datatypes). 
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Noncontiguous Accesses 

• Parallel applications commonly need to write distributed arrays to disk 

– Better to do this to a single file, instead of multiple 

• A big advantage of MPI I/O over Unix I/O is the ability to specify 

noncontiguous accesses in both a file and a memory buffer. 

– Read or write such a file in parallel by using derived datatypes within a 

single MPI function call 

– Let the MPI implementation to optimize the access 

• Collective I/O combined with noncontiguous accesses generally 

yields the highest performance 

• HPC parallel I/O requires some extra work, but it  

– potentially provides high throughput and  

– offers a single (unified) file for viz and pre/post processing 
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FILE 

P0 

P1 

P2 

P(n-1) 

P#  is a single processor with rank #. 

…
 

memory 

memory 

memory 

Simple MPI-IO 

Each MPI task reads/writes a single block: 

memory 
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File Pointers and Offsets 

• In simple MPI-IO, each MPI process reads or writes a single block. 

• I/O functions must be preceded by a call to MPI_File_open, which 

defines both an individual file pointer for the process, and a shared 

file pointer for the communicator. 

• We have three means of positioning where the read or write takes 

place for each process:  

1. Use individual file pointers, call MPI_File_seek/read  

2. Calculate byte offsets, call MPI_File_read_at  

3. Access a shared file pointer, call MPI_File_seek/read_shared 

• Techniques 1 and 2 are naturally associated with C and Fortran, 

respectively. In any case, the goal is roughly indicated by the 

previous figure. 
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MPI_File fh; 

MPI_Status status; 

 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 

 

bufsize = FILESIZE/nprocs; 

nints   = bufsize/sizeof(int); 

 

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",  

              MPI_MODE_RDONLY, MPI_INFO_NULL, &fh); 

MPI_File_seek(  fh, rank*bufsize, MPI_SEEK_SET); 

MPI_File_read(  fh, buf, nints,   MPI_INT, &status); 

MPI_File_close(&fh); 

Reading by Using Individual File Pointers – C Code 
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include 'mpif.h' 

integer status(MPI_STATUS_SIZE) 

integer (kind=MPI_OFFSET_KIND) offset 

 

nints  = FILESIZE/(nprocs*INTSIZE) 

offset = rank * nints * INTSIZE 

 

call MPI_FILE_OPEN( MPI_COMM_WORLD, '/pfs/datafile', & 

                    MPI_MODE_RDONLY,                 & 

                    MPI_INFO_NULL, fh, ierr) 

call MPI_FILE_READ_AT( fh, offset, buf, nints, 

                       MPI_INTEGER, status, ierr) 

call MPI_FILE_CLOSE(fh, ierr) 

Reading by Using Explicit Offsets – F90 Code 
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Operations with Pointers, Offsets, Shared Pointers 

• MPI_File_open flags: 

– MPI_MODE_RDONLY  (read only) 

– MPI_MODE_WRONLY  (write only) 

– MPI_MODE_RDWR   (read and write) 

– MPI_MODE_CREATE  (create file if it doesn’t exist) 

– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran, to combine multiple flags 

• To write into a file, use MPI_File_write or MPI_File_write_at, or… 

• The following operations reference the implicitly-maintained shared 

pointer defined by MPI_File_open 

– MPI_File_read_shared 

– MPI_File_write_shared 

– MPI_File_seek_shared 
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File Views 

• A view is a triplet of arguments (displacement, etype, filetype) that is 

passed to MPI_File_set_view. 

 

– displacement = number of bytes to be skipped from the start of the file 

– etype = unit of data access (can be any basic or derived datatype) 

– filetype = specifies layout of etypes within file 

 

• Note that etype is considered to be the elementary type, but since it 

can be a derived datatype, there’s really nothing elementary about it. 

• In the file view depicted on the next slide, etype is double precision, 

filetype is a vector type, and displacement is used to stagger the 

starting positions by MPI rank. 
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etype = MPI_DOUBLE_PRECISION   elementary datatype 

filetype = myPattern derived datatype, sees every 4th DP 

displacement 

VIEW:  each task repeats myPattern 

 with different displacements 

head of file 

… task0 

task1 

task2 

task3 

… 
… 
… 

file 

Example #1: File Views for a Four-Task Job 

… 



21 

File View Examples 

• In Example 1, we write contiguous data into a contiguous block 

defined by a file view. 

– We give each process a different file view so that together, the processes 

lay out a series of blocks in the file, one block per process. 

 

• In Example 2, we write contiguous data into two separate blocks 

defined by a different file view. 

– Each block is a contiguous type in memory, but the pair of blocks is a 

vector type in the file view. 

– We again use displacements to lay out a series of blocks in the file, one 

block per process, in a repeating fashion.  
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File 

P0 P1 P2 P3 

Example #1: File Views for a Four-Task Job 

• 1 block from each task, written in task order 

MPI_File_set_view assigns regions of the file to separate processes 
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#define N 100 

MPI_Datatype arraytype; 

MPI_Offset disp; 

 

disp = rank*sizeof(int)*N; etype = MPI_INT; 

MPI_Type_contiguous(N, MPI_INT, &arraytype); 

MPI_Type_commit(&arraytype); 

 

MPI_File_open(    MPI_COMM_WORLD, "/pfs/datafile",  

                  MPI_MODE_CREATE | MPI_MODE_RDWR,  

                  MPI_INFO_NULL, &fh); 

MPI_File_set_view(fh, disp, etype, arraytype,  

                  "native", MPI_INFO_NULL); 

MPI_File_write(fh, buf, N, etype, MPI_STATUS_IGNORE); 

Code for Example #1 
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File 

P0 P1 P2 P3 NW NW 

Example #2: File Views for a Four-Task Job 

• 2 blocks from each task, written in round-robin fashion to a file 

MPI_File_set_view assigns regions of the file to separate processes 
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Code for Example #2 

int buf[NW*2]; 

   MPI_File_open(MPI_COMM_WORLD, "/data2",  

                 MPI_MODE_RDWR, MPI_INFO_NULL, &fh); 

/* want to see 2 blocks of NW ints, NW*npes apart */ 

   MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk); 

   MPI_Type_commit(                         &fileblk); 

   disp = (MPI_Offset)rank*NW*sizeof(int); 

   MPI_File_set_view(fh, disp, MPI_INT, fileblk,  

                     "native", MPI_INFO_NULL); 

 

/* processor writes 2 'ablk', each with NW ints */ 

   MPI_Type_contiguous(NW,   MPI_INT, &ablk); 

   MPI_Type_commit(&ablk); 

   MPI_File_write(fh, (void *)buf, 2, ablk, &status); 
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Small individual 

requests 

Large collective 

access 

Collective I/O in MPI 

• A critical optimization in parallel I/O 

• Allows communication of “big picture” to file system 

• Framework for 2-phase I/O, in which communication precedes I/O 

• Preliminary communication can use MPI machinery to aggregate data 

• Basic idea:  build large blocks, so that reads/writes in I/O system will 

be more efficient 
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MPI Routines for Collective I/O 

• Typical routine names: 

– MPI_File_read_all 

– MPI_File_read_at_all, etc. 

• The _all indicates that all processes in the group specified by the 

communicator passed to MPI_File_open will call this function 

• Each process provides nothing beyond its own access information, 

including its individual pointer 

– The argument list is therefore the same as for the non-collective functions 

• Collective I/O operations work with shared pointers, too 

– The general rule is to replace _shared with _ordered in the routine name 

– Thus, the collective equivalent of MPI_File_read_shared is 

MPI_File_read_ordered 
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Advantages of Collective I/O 

• By calling the collective I/O functions, the user allows an 

implementation to optimize the request based on the combined 

requests of all processes 

 

• The implementation can merge the requests of different processes 

and service the merged request efficiently 

 

• Particularly effective when the accesses of different processes are 

noncontiguous and interleaved 
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Original memory layout on 4 processors 

then writes to File layout 

MPI collects in temporary buffers 

Collective Choreography 
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Asynchronous Operations 

Asynchronous operations give the system even more opportunities to 

optimize I/O. 

 

For each noncollective I/O routine, there is an nonblocking variant.  

• MPI_File_iwrite and MPI_File_iread, e.g., are nonblocking calls.  

• The general naming convention is to replace “read” with “iread”, or 

“write” with “iwrite”.  

• These nonblocking routines are analogous to the nonblocking sends 

and receives in MPI point-to-point communication.  

• Accordingly, these types of calls should be terminated with MPI_Wait. 
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Collective Asynchronous Operations 

For each collective I/O routine, there is a split variant.  

• A collective I/O operation can begin at some point and end at some 

later point.  

• When using file pointers: 

– MPI_File_read_all_begin/end 

– MPI_File_write_all_begin/end  

• When using explicit offsets: 

– MPI_File_read_at_all_begin/end 

– MPI_File_write_at_all_begin/end  

• When using shared pointers: 

– MPI_File_read_ordered_begin/end 

– MPI_File_write_ordered_begin/end 
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Passing Along Hints to MPI-IO 

MPI_Info info; 

MPI_Info_create(&info); 

 

/* no. of I/O devices to be used for file striping */ 

MPI_Info_set(info, "striping_factor", "4"); 

 

/* the striping unit in bytes */ 

MPI_Info_set(info, "striping_unit", "65536"); 

 

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",  

         MPI_MODE_CREATE | MPI_MODE_RDWR, 

              info, &fh); 

 

MPI_Info_free(&info); 
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Examples of Hints (also used in ROMIO) 

• striping_unit 

• striping_factor 

• cb_buffer_size 

• cb_nodes 

 

• ind_rd_buffer_size 

• ind_wr_buffer_size 

 

• start_iodevice 

• pfs_svr_buf 

• direct_read 

• direct_write 

MPI-2 predefined hints 

New algorithm 

parameters 

Platform-specific hints 
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MPI-IO Summary 

• MPI-IO has many features that can help users achieve high 

performance 

• The most important of these features are: 

– the ability to specify noncontiguous accesses 

– the collective I/O functions 

– the ability to pass hints to the implementation 

• In particular, when accesses are noncontiguous, users must:  

– Create derived datatypes  

– Define file views  

– Use the collective I/O functions 

• Use of these features is encouraged, because I/O is expensive! It’s 

best to let the system make tuning decisions on your behalf.  
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Optional Lab 

• Let’s run an MPI-IO program that writes in parallel to a single file and 

test how the speed depends on striping. First, compile the code. 
 

 tar xvfz ~tg459572/LABS/mpiio.tgz 

 cd mpiio; make  
 

• Then examine ranger.sh. It performs the same striping commands 

you tried earlier. Here is what the script does:  

– Creates a working directory on $SCRATCH.  

– Copies mpiio writing and reading programs into that directory.  

– Runs the writing and reading test programs with default striping, taking 

timings in the process.  

– Repeats the tests for 8-way and 2-way striping.  

– Deletes the working directory.  
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Running the Optional Lab 

• Submit ranger.sh with qsub. Don’t forget to set the account to the 

correct account for this class.  

• Some questions to ponder while waiting for the scheduler: what is the 

default stripe for $HOME, $WORK, and $SCRATCH? Do these 

choices make sense? 

• After the job completes, you’ll find the reading and writing rates for 

different stripe counts in the standard output that comes back from 

the job.  Look for ====. 

• Submit again and look for timing variability. If you like, you can 

change the BLOCKS variable to set a new size for the MPI-IO file 

prior to re-submitting.  

• Credit: the MPI-IO program comes from 

http://beige.ucs.indiana.edu/I590/node86.html. 

 

http://beige.ucs.indiana.edu/I590/node86.html

