
Steve Lantz

Senior Research Associate

Cornell CAC

Workshop: Data Analysis on Ranger, January 19, 2012
Based on materials developed by Bill Barth at TACC

Parallel I/O

2

1. Lustre

3

Lustre Components

• All Ranger file systems are Lustre, which is a globally available

distributed file system.

• Primary components are the MDS and OSS nodes. The OSSs

contain the data, while the MDS contains the filename-to-object map.

http://wiki.lustre.org/manual/LustreManual18_HTML/IntroductionToLustre.html#50651242_pgfId-1287192

4

Parts of the Lustre System

• The client (you) must talk to both the MDS and OSS servers in order

to use the Lustre system.

• File I/O goes to one or more OSS’s. Opening files, listing directories,

etc. go to the MDS.

• Front end to the

Lustre file system is

a Logical Object

Volume (LOV) that

simply appears like

any other large

volume that would be

mounted on a node.

5

Lustre File System and Striping

• Striping allows parts of files to be stored on different OSTs, in a

RAID-0 pattern.

– The number of objects is called the stripe_count.

– Objects contain "chunks" of data that can be as large as stripe_size.

6

Benefits of Lustre Striping

• Due to striping, the Lustre file system scales with the number of

OSS’s available.

• The capacity of a Lustre file system equals the sum of the capacities

of the storage targets.

– Benefit #1: max file size is not limited by the size of a single target.

– Benefit #2: I/O rate to a file is the of the aggregate I/O rate to the objects.

• Ranger provides 72 Sun I/O nodes, with an nominal data rate that

approaches 50GB/s, but this speed is split by all users of the system.

• Metadata access can be a bottleneck, so the MDS needs to have

especially good performance (e.g., solid state disks on some

systems).

7

Lustre File System (lfs) Commands

• Among various lfs commands are lfs getstripe and lfs setstripe.

• The lfs setstripe command takes four arguments:

 lfs setstripe

 <file|dir> -s <bytes/OST> -o <start OST> -c <#OSTs>

1. File or directory for which to set the stripe.

2. The number of bytes on each OST, with k, m, or g for KB, MB or GB.

3. OST index of first stripe (-1 for filesystem default) .

4. Number of OSTs to stripe over.

• So to stripe across two OSTs, you would call:

 lfs setstripe bigfile -s 4m -o -1 -c 2

8

Getting Properties of File Systems and Files

• There are lfs commands to tell you the quotas and striping for Lustre

file systems and files. Get the quota for $WORK with

 lfs quota $WORK

• To see striping, try creating a small file and then using lfs to get its

stripe information.

 ls > file.txt

 lfs getstripe file.txt

• The listing at the end of the results shows which OSTs have parts of

the file.

9

A Striping Test to Try

• You can set striping on a file or directory with the lfs setstripe

command. First set it for a file:

 lfs setstripe stripy.txt -s 4M -o -1 -c 6

 ls -la > stripy.txt

 lfs getstripe stripy.txt

• Now try the same thing for a directory. First create a directory, then

set its striping, then make a file within that directory.

 mkdir s; cd s; lfs setstripe . -s 4M -o -1 -c 6

 ls -la > file.txt

 lfs getstripe file.txt

• In both cases, you should see the file striped across six OSTs.

10

2. Parallel I/O (MPI-2)

11

Parallel I/O with MPI-IO

• Why parallel I/O?

– I/O was lacking from the MPI-1 specification

– Due to need, it was defined independently, then subsumed into MPI-2

• What is parallel I/O? It occurs when:

– multiple MPI tasks can read or write simultaneously,

– from or to a single file,

– in a parallel file system,

– through the MPI-IO interface.

• A parallel file system works by:

– appearing as a normal Unix file system, while

– employing multiple I/O servers (usually) for high sustained throughput.

12

MPI-IO Advantages

• Two common alternatives to parallel MPI-IO are:

1. Rank 0 accesses a file; it gathers/scatters file data from/to other ranks.

2. Each rank opens a separate file and does I/O to it independently.

• Alternative I/O schemes are simple enough to code, but have either

1. Poor scalability (e.g., the single task is a bottleneck) or

2. File management challenges (e.g., files must be collected from local

disk).

• MPI-IO provides

– mechanisms for performing synchronization,

– syntax for data movement, and

– means for defining noncontiguous data layout in a file (MPI datatypes).

13

Noncontiguous Accesses

• Parallel applications commonly need to write distributed arrays to disk

– Better to do this to a single file, instead of multiple

• A big advantage of MPI I/O over Unix I/O is the ability to specify

noncontiguous accesses in both a file and a memory buffer.

– Read or write such a file in parallel by using derived datatypes within a

single MPI function call

– Let the MPI implementation to optimize the access

• Collective I/O combined with noncontiguous accesses generally

yields the highest performance

• HPC parallel I/O requires some extra work, but it

– potentially provides high throughput and

– offers a single (unified) file for viz and pre/post processing

14

FILE

P0

P1

P2

P(n-1)

P# is a single processor with rank #.

…

memory

memory

memory

Simple MPI-IO

Each MPI task reads/writes a single block:

memory

15

File Pointers and Offsets

• In simple MPI-IO, each MPI process reads or writes a single block.

• I/O functions must be preceded by a call to MPI_File_open, which

defines both an individual file pointer for the process, and a shared

file pointer for the communicator.

• We have three means of positioning where the read or write takes

place for each process:

1. Use individual file pointers, call MPI_File_seek/read

2. Calculate byte offsets, call MPI_File_read_at

3. Access a shared file pointer, call MPI_File_seek/read_shared

• Techniques 1 and 2 are naturally associated with C and Fortran,

respectively. In any case, the goal is roughly indicated by the

previous figure.

16

MPI_File fh;

MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

 MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);

MPI_File_read(fh, buf, nints, MPI_INT, &status);

MPI_File_close(&fh);

Reading by Using Individual File Pointers – C Code

17

include 'mpif.h'

integer status(MPI_STATUS_SIZE)

integer (kind=MPI_OFFSET_KIND) offset

nints = FILESIZE/(nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &

 MPI_MODE_RDONLY, &

 MPI_INFO_NULL, fh, ierr)

call MPI_FILE_READ_AT(fh, offset, buf, nints,

 MPI_INTEGER, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)

Reading by Using Explicit Offsets – F90 Code

18

Operations with Pointers, Offsets, Shared Pointers

• MPI_File_open flags:

– MPI_MODE_RDONLY (read only)

– MPI_MODE_WRONLY (write only)

– MPI_MODE_RDWR (read and write)

– MPI_MODE_CREATE (create file if it doesn’t exist)

– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran, to combine multiple flags

• To write into a file, use MPI_File_write or MPI_File_write_at, or…

• The following operations reference the implicitly-maintained shared

pointer defined by MPI_File_open

– MPI_File_read_shared

– MPI_File_write_shared

– MPI_File_seek_shared

19

File Views

• A view is a triplet of arguments (displacement, etype, filetype) that is

passed to MPI_File_set_view.

– displacement = number of bytes to be skipped from the start of the file

– etype = unit of data access (can be any basic or derived datatype)

– filetype = specifies layout of etypes within file

• Note that etype is considered to be the elementary type, but since it

can be a derived datatype, there’s really nothing elementary about it.

• In the file view depicted on the next slide, etype is double precision,

filetype is a vector type, and displacement is used to stagger the

starting positions by MPI rank.

20

etype = MPI_DOUBLE_PRECISION elementary datatype

filetype = myPattern derived datatype, sees every 4th DP

displacement

VIEW: each task repeats myPattern

 with different displacements

head of file

… task0

task1

task2

task3

…
…
…

file

Example #1: File Views for a Four-Task Job

…

21

File View Examples

• In Example 1, we write contiguous data into a contiguous block

defined by a file view.

– We give each process a different file view so that together, the processes

lay out a series of blocks in the file, one block per process.

• In Example 2, we write contiguous data into two separate blocks

defined by a different file view.

– Each block is a contiguous type in memory, but the pair of blocks is a

vector type in the file view.

– We again use displacements to lay out a series of blocks in the file, one

block per process, in a repeating fashion.

22

File

P0 P1 P2 P3

Example #1: File Views for a Four-Task Job

• 1 block from each task, written in task order

MPI_File_set_view assigns regions of the file to separate processes

23

#define N 100

MPI_Datatype arraytype;

MPI_Offset disp;

disp = rank*sizeof(int)*N; etype = MPI_INT;

MPI_Type_contiguous(N, MPI_INT, &arraytype);

MPI_Type_commit(&arraytype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

 MPI_MODE_CREATE | MPI_MODE_RDWR,

 MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, arraytype,

 "native", MPI_INFO_NULL);

MPI_File_write(fh, buf, N, etype, MPI_STATUS_IGNORE);

Code for Example #1

24

File

P0 P1 P2 P3 NW NW

Example #2: File Views for a Four-Task Job

• 2 blocks from each task, written in round-robin fashion to a file

MPI_File_set_view assigns regions of the file to separate processes

25

Code for Example #2

int buf[NW*2];

 MPI_File_open(MPI_COMM_WORLD, "/data2",

 MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

/* want to see 2 blocks of NW ints, NW*npes apart */

 MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);

 MPI_Type_commit(&fileblk);

 disp = (MPI_Offset)rank*NW*sizeof(int);

 MPI_File_set_view(fh, disp, MPI_INT, fileblk,

 "native", MPI_INFO_NULL);

/* processor writes 2 'ablk', each with NW ints */

 MPI_Type_contiguous(NW, MPI_INT, &ablk);

 MPI_Type_commit(&ablk);

 MPI_File_write(fh, (void *)buf, 2, ablk, &status);

26

Small individual

requests

Large collective

access

Collective I/O in MPI

• A critical optimization in parallel I/O

• Allows communication of “big picture” to file system

• Framework for 2-phase I/O, in which communication precedes I/O

• Preliminary communication can use MPI machinery to aggregate data

• Basic idea: build large blocks, so that reads/writes in I/O system will

be more efficient

27

MPI Routines for Collective I/O

• Typical routine names:

– MPI_File_read_all

– MPI_File_read_at_all, etc.

• The _all indicates that all processes in the group specified by the

communicator passed to MPI_File_open will call this function

• Each process provides nothing beyond its own access information,

including its individual pointer

– The argument list is therefore the same as for the non-collective functions

• Collective I/O operations work with shared pointers, too

– The general rule is to replace _shared with _ordered in the routine name

– Thus, the collective equivalent of MPI_File_read_shared is

MPI_File_read_ordered

28

Advantages of Collective I/O

• By calling the collective I/O functions, the user allows an

implementation to optimize the request based on the combined

requests of all processes

• The implementation can merge the requests of different processes

and service the merged request efficiently

• Particularly effective when the accesses of different processes are

noncontiguous and interleaved

29

Original memory layout on 4 processors

then writes to File layout

MPI collects in temporary buffers

Collective Choreography

30

Asynchronous Operations

Asynchronous operations give the system even more opportunities to

optimize I/O.

For each noncollective I/O routine, there is an nonblocking variant.

• MPI_File_iwrite and MPI_File_iread, e.g., are nonblocking calls.

• The general naming convention is to replace “read” with “iread”, or

“write” with “iwrite”.

• These nonblocking routines are analogous to the nonblocking sends

and receives in MPI point-to-point communication.

• Accordingly, these types of calls should be terminated with MPI_Wait.

31

Collective Asynchronous Operations

For each collective I/O routine, there is a split variant.

• A collective I/O operation can begin at some point and end at some

later point.

• When using file pointers:

– MPI_File_read_all_begin/end

– MPI_File_write_all_begin/end

• When using explicit offsets:

– MPI_File_read_at_all_begin/end

– MPI_File_write_at_all_begin/end

• When using shared pointers:

– MPI_File_read_ordered_begin/end

– MPI_File_write_ordered_begin/end

32

Passing Along Hints to MPI-IO

MPI_Info info;

MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */

MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */

MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

 MPI_MODE_CREATE | MPI_MODE_RDWR,

 info, &fh);

MPI_Info_free(&info);

33

Examples of Hints (also used in ROMIO)

• striping_unit

• striping_factor

• cb_buffer_size

• cb_nodes

• ind_rd_buffer_size

• ind_wr_buffer_size

• start_iodevice

• pfs_svr_buf

• direct_read

• direct_write

MPI-2 predefined hints

New algorithm

parameters

Platform-specific hints

34

MPI-IO Summary

• MPI-IO has many features that can help users achieve high

performance

• The most important of these features are:

– the ability to specify noncontiguous accesses

– the collective I/O functions

– the ability to pass hints to the implementation

• In particular, when accesses are noncontiguous, users must:

– Create derived datatypes

– Define file views

– Use the collective I/O functions

• Use of these features is encouraged, because I/O is expensive! It’s

best to let the system make tuning decisions on your behalf.

35

Optional Lab

• Let’s run an MPI-IO program that writes in parallel to a single file and

test how the speed depends on striping. First, compile the code.

 tar xvfz ~tg459572/LABS/mpiio.tgz

 cd mpiio; make

• Then examine ranger.sh. It performs the same striping commands

you tried earlier. Here is what the script does:

– Creates a working directory on $SCRATCH.

– Copies mpiio writing and reading programs into that directory.

– Runs the writing and reading test programs with default striping, taking

timings in the process.

– Repeats the tests for 8-way and 2-way striping.

– Deletes the working directory.

36

Running the Optional Lab

• Submit ranger.sh with qsub. Don’t forget to set the account to the

correct account for this class.

• Some questions to ponder while waiting for the scheduler: what is the

default stripe for $HOME, $WORK, and $SCRATCH? Do these

choices make sense?

• After the job completes, you’ll find the reading and writing rates for

different stripe counts in the standard output that comes back from

the job. Look for ====.

• Submit again and look for timing variability. If you like, you can

change the BLOCKS variable to set a new size for the MPI-IO file

prior to re-submitting.

• Credit: the MPI-IO program comes from

http://beige.ucs.indiana.edu/I590/node86.html.

http://beige.ucs.indiana.edu/I590/node86.html

