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Outline of presentation

• Overview of message passing
• MPI: what is it and why should you learn it?
• Compiling and running MPI programs
• MPI API

– Point-to-point communication
– Collective communication and computation

• MPI references and documentation
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Message passing overview

• What is message passing?
– Sending and receiving messages between tasks or processes
– Capabilities can include performing operations on data in transit and 

synchronizing tasks
• Memory model: distributed

– Each process has its own address space and no way to get at 
another’s, so it is necessary to send/receive data

• Programming model: API
– Programmer makes use of an Application Programming Interface (API) 

that specifies the functionality of high-level communication routines
– Functions give access to a low-level implementation that takes care of 

sockets, buffering, data copying, message routing, etc.
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An API for distributed memory parallelism

• Assumption: processes do not see each other’s memory
• Communication speed is determined by some kind of network 

– Typical network = switch + cables + adapters + software stack…
• Key: the implementation of a message passing API (like MPI) can 

be optimized for any given network
– Program gets the benefit 
– No code changes required
– Works in shared memory, too
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Pros and cons of the distributed memory model

• Advantages
– Parallelism in an application is explicitly identified (not a disadvantage!)
– Potential to scale very well to large numbers of processors
– Avoids problems associated with shared memory: e.g., no interference 

or overhead due to maintaining cache coherency
– Cost-effective: can use commodity, off-the-shelf processors and 

networking hardware
• Disadvantages

– The programmer is responsible for controlling the data movement 
between processes, plus many associated details

– NUMA (Non-Uniform Memory Access: true of shared memory, too)
– It may be difficult to map an application’s global data structures and/or 

data access patterns to this memory model
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Contrast with shared memory parallelism

• Assumption: processes have access to the same memory
– As usual, the compiler’s job is to translate program variables into virtual 

memory addresses, which are global
– Therefore, the compiler itself can potentially be used to parallelize code, 

perhaps with no need for a special API…
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Pros and cons of the shared memory model

• Advantages
– Programmer no longer needs to specify explicit communication of data 

between tasks
– Tasks “communicate” via a common address space, into which they 

read and write asynchronously
• Disadvantages

– Understanding performance and managing data locality become more 
difficult (the downside of giving up explicit control!)

– Actual shared memory is usually limited to relatively few processors
– Much harder to implement a shared memory model on a distributed 

memory machine, compared to the other way around!
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Alternatives to MPI using a shared memory model

• Multithreading (useful for actual shared memory only)
– OpenMP compiler directives
– Pthreads = POSIX threads, and similar APIs
– “The medium (i.e., memory) is the message”

• PGAS = Partitioned Global Address Space languages/extensions 
– Make physically distributed memory appear to be shared memory
– UPC = Unified Parallel C
– Co-Array Fortran (due to be included in next Fortran standard)
– Fortress

• Higher-level Libraries/APIs
– Global Arrays from PNNL

• Hybrids of the above with MPI message passing are possible
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MPI-1

• MPI-1 - Message Passing Interface (v. 1.2)
– Library standard defined by committee of vendors, implementers, and 

parallel programmers
– Used to create parallel SPMD codes based on explicit message passing

• Available on almost all parallel machines with  C/C++ and Fortran 
bindings (and occasionally with other bindings)

• About 125 routines, total 
– 6 basic routines
– The rest include routines of increasing generality and specificity
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MPI-2

• Includes features left out of MPI-1
– One-sided communications
– Dynamic process control
– More complicated collectives
– Parallel I/O (MPI-IO)

• Implementations came along only gradually
– Not quickly undertaken after the reference document was released (in 

1997)
– Now OpenMPI, MPICH2 (and its descendants), and the vendor 

implemenations are nearly complete or fully complete
• Most applications still rely on MPI-1, plus maybe MPI-IO
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Why learn MPI?

• MPI is a de facto standard
– Public domain versions are easy to install
– Vendor-optimized version are available on most hardware

• MPI is “tried and true”
– MPI-1 was released in 1994, MPI-2 in 1996

• MPI applications can be fairly portable
• MPI is a good way to learn parallel programming
• MPI is expressive: it can be used for many different models of 

computation, therefore can be used with many different applications
• MPI code is efficient (though some think of it as the “assembly 

language of parallel processing”)
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Message passing with MPI

• Typically use SPMD-style coding: 
Single Program, Multiple Data
– Each process will run a copy of the 

same code, but with different data
• Embed calls to MPI functions or 

subroutines in the source code
– Data transfer is usually cooperative; 

both sender and receiver call an MPI 
function (see figure)

• Link the appropriate MPI library to 
the compiled application

• Run using “mpiexec” or equivalent

memorymemory

CPU CPU

Network

data data
original

copy

task 1task 0
data data

send receive

Machine A Machine B

network

message
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Compiling MPI programs

• Generally use a special compiler or compiler wrapper script
– Not defined by the standard
– Consult your implementation
– Correctly handles include path, library path, and libraries

• MPICH-style (the most common)
mpicc -o foo foo.c
mpif90 -o foo foo.f (also mpif77)

• Some MPI specific compiler options
-mpilog -- Generate log files of MPI calls 
-mpitrace -- Trace execution of MPI calls 
-mpianim -- Real-time animation of MPI (not available on all systems) 

• Note: compiler/linker names are specific to MPICH. On IBM Power 
systems, they are mpcc_r and mpxlf_r respectively
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Running MPI programs

• To run a simple MPI program using MPICH
mpirun -np 2 ./foo

mpiexec -np 2 ./foo

• Some MPI specific running options
-t -- shows the commands that mpirun would execute
-help -- shows all options for mpirun

• To run over Ranger’s InfiniBand (as part of an SGE script)
ibrun ./foo

– The scheduler handles the rest
• Note: mpirun and mpiexec are not part of MPI, but a similar 

command can be found in nearly all implementations
– There are exceptions: on the IBM SP, for example, it is poe
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Basic MPI

• It is possible to parallelize an entire application with just a few MPI 
functions
– Initialization and termination
– Point-to-point communication
– Maybe a couple of types of collective communication/computation

• In principle this subset is enough for many applications
• However, “advanced” MPI functions can be more efficient and easier 

to use in the situations for which they were designed
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• All processes must initialize and finalize MPI
– These are collective calls

• All processes must include the MPI header file 
– Provides basic MPI definitions and types
– Implementation-specific, so don’t copy these from system to system

Initialization and termination

#include <mpi.h>
main(int argc char**&argv){
int ierr;
ierr = MPI_Init(&argc, &argv);

:
ierr = MPI_Finalize();
}

program init_finalize
include ‘mpif.h’
integer ierr
call mpi_init(ierr)

:
call mpi_finalize(ierr)
end program
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Fortran and C differences…

• Header files

– Optionally, in Fortran 90/95, one can compile an mpif.f90 file to create 
the MPI module, then “use MPI” in the calling scope

• Format of MPI calls

Fortran include file C include file

include ‘mpif.h’ #include “mpi.h”

Fortran Binding C Binding

CALL MPI_XXX(parameters,…,ierr) rc = MPI_Xxxx(parameters,…)
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MPI communicators

• Communicators 
– Collections of processes that can communicate with each other
– Most MPI routines require a communicator as an argument
– Predefined communicator MPI_COMM_WORLD encompasses all tasks
– New communicators can be defined; any number can co-exist

• Each communicator must be able to answer two questions
– How many processes exist in this communicator?
– MPI_Comm_size returns the answer, say, Np

– Of these processes, which process (numerical rank) am I?
– MPI_Comm_rank returns the rank of the current process within the 

communicator, an integer between 0 and Np-1 inclusive 
– Typically these functions are called just after MPI_Init
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MPI_COMM_WORLD: C example

#include <mpi.h>
main(int argc, char **argv){

int np, mype, ierr;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_size(MPI_COMM_WORLD, &np);
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &mype);

:
MPI_Finalize();

}
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MPI_COMM_WORLD: C++ example
#include “mpif.h”
[other includes]
int main(int argc, char *argv[]){

int np,  mype,  ierr;
[other declarations]

:
MPI::Init(argc, argv);

np   = MPI::COMM_WORLD.Get_size();
mype = MPI::COMM_WORLD.Get_rank();

:
[actual work goes here]

:
MPI::Finalize();

}
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MPI_COMM_WORLD: Fortran example 

program param
include ‘mpif.h’
integer ierr, np, mype

call mpi_init(ierr)
call mpi_comm_size(MPI_COMM_WORLD, np  , ierr)
call mpi_comm_rank(MPI_COMM_WORLD, mype, ierr)

:
call mpi_finalize(ierr)

end program
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How size and rank are used during MPI execution

• Typically, every process will be an exact duplicate of the same MPI 
executable: Single Program, Multiple Data (SPMD).

• However, the runtime environment of each process is not identical; it 
includes an environment variable that holds the unique rank of that 
particular process within MPI_COMM_WORLD

• Each process can therefore check its own rank to determine which 
part of the problem to work on

• Once execution starts, processes work completely independently
of each other, except when communicating
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Topics in point-to-point communication

• MPI_SEND and MPI_RECV
• Synchronous vs. buffered (asynchronous) communication
• Blocking send and receive
• Non-blocking send and receive
• Combined send/receive
• Deadlock, and how to avoid it
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Point-to-point communication

• Sending data from one point (process/task) to another point 
(process/task)

• One task sends while another recives
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mpi_send (data, count, type, dest, tag, comm, ierr)
mpi_recv (data, count, type, src,  tag, comm, status, ierr)

MPI_Send (data, count, type, dest, tag, comm)
MPI_Recv (data, count, type, src,  tag, comm, status)

MPI_Send and MPI_Recv

• MPI_Send(): A blocking call which returns only when data has been 
sent from its buffer

• MPI_Recv(): A blocking receive which returns only when data has 
been received onto its buffer



6/5/2009 www.cac.cornell.edu 26

An MPI message travels in an envelope

• When MPI sends a message, it doesn’t just send the contents; it 
also sends an “envelope” describing the contents
– void* data:  actual data being passed (via pointer to first element)
– int count:  number of type values in data
– MPI_Datatype type:  type of data
– int dest/src:  rank of the receiving/sending process
– int tag:  simple identifier that must match between sender/receiver
– MPI_Comm comm:  communicator (must match – no wildcards)
– MPI_Status* status:  returns information on the message received

MPI_Send (data, count, type, dest, tag, comm)
MPI_Recv (data, count, type, src,  tag, comm, status)
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Notes on the MPI envelope

• A few Fortran particulars
– All Fortran arguments are passed by reference
– INTEGER ierr: variable to store the error code (in C/C++ this is the 

return value of the function call)
• Wildcards are allowed

– src can be the wildcard MPI_ANY_SOURCE
– tag can be the wildcard MPI_ANY_TAG
– status returns information on the source and tag, useful in conjunction 

with the above wildcards (receiving only)

mpi_send (data, count, type, dest, tag, comm, ierr)
mpi_recv (data, count, type, src,  tag, comm, status, ierr)
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Assigning roles in point-to-point code

MPI_Comm_rank(comm,&mytid);

if (mytid==0) {
MPI_Send (buffer_A, /* target= */ 1, /* tag= */ 0, comm);

} else if (mytid==1) {
MPI_Recv( buffer_B, /* source= */ 2, /* tag= */ 6, comm);

}

• Recall that all tasks execute the same code
• Thus, conditionals based on communicator rank are often needed
• Tags must match on sender and receiver for a message to succeed
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#include  "mpi.h"
main(int argc, char **argv){
int ipe, ierr; double a[2];
MPI_Status status;
MPI_Comm icomm = MPI_COMM_WORLD;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_rank(icomm, &ipe);
ierr = MPI_Comm_size(icomm, &myworld);
if(ipe == 0){

a[0] = mype; a[1] = mype+1;
ierr = MPI_Send(a,2,MPI_DOUBLE, 1,9, icomm);

}
else if (ipe == 1){

ierr = MPI_Recv(a,2,MPI_DOUBLE, 0,9,icomm,&status);
printf("PE %d, A array= %f %f\n",mype,a[0],a[1]);

}
MPI_Finalize();

}

Complete point-to-point code: C example
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program sr
include "mpif.h"
real*8,  dimension(2)               :: A
integer, dimension(MPI_STATUS_SIZE) :: istat
icomm = MPI_COMM_WORLD
call mpi_init(ierr)
call mpi_comm_rank(icomm,mype,ierr)
call mpi_comm_size(icomm,np  ,ierr);

if(mype.eq.0) then
a(1) = real(ipe); a(2) = real(ipe+1)
call mpi_send(A,2,MPI_REAL8, 1,9,icomm, ierr)
else if (mype.eq.1) then
call mpi_recv(A,2,MPI_REAL8, 0,9,icomm, istat,ierr)
print*,"PE ",mype,"received A array =",A
endif

call mpi_finalize(ierr)
end program

Complete point-to-point code: Fortran example
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Synchronous send, MPI_Ssend

source
[0]

dest
[1]

request to send

ready to receive

message

• Process 0 waits until process 1 is ready
• “Handshake” occurs to confirm a safe send
• Blocking send on 0 takes place along with a blocking receive on 1
• Rarely useful in the real world

– Need to be able to proceed when multiple tasks are out of sync
– Better to copy to a temporary buffer somewhere so tasks can move on
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Buffered send, MPI_Bsend

CPU 1 CPU 2

data

datadata

Process 0 Process 1

system buffer

receivesend

• Message contents are sent to a system-controlled block of memory
• Process 0 continues executing other tasks; when process 1 is ready 

to receive, the system simply copies the message from the system 
buffer into the appropriate memory location controlled by process

• Must be preceded with a call to MPI_Buffer_attach
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Blocking vs. non-blocking communication

• Blocking
– A blocking routine will only return when it is safe to use the buffer again
– On the sender, “safe” means only that modification will not affect the 

data to be sent, and it does not imply that the data was actually received
– A blocking call can be either synchronous or asynchronous (buffered)

• Non-blocking
– Non-blocking send and receive routines are simply requests; they return 

immediately without waiting for the communication events to complete
– It is therefore unsafe to modify the buffer until you know the requested 

operation has completed: pair each non-blocking operation with an 
MPI_Wait to make sure (this will also clear the request handle)

– The aim of non-blocking calls is to overlap computation with 
communication for possible performance gains
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Blocking and non-blocking routines

Blocking send MPI_Send(buf, count, datatype, dest, tag, comm)

Non-blocking 
send

MPI_Isend(buf, count, datatype, dest, tag, comm, 
request)

Blocking 
receive

MPI_Recv(buf, count, datatype, source, tag, comm, 
status)

Non-blocking 
receive

MPI_Irecv(buf, count, datatype, source, tag, comm, 
request)

Notes
1. request: unique handle passed to a non-blocking send or receive operation
2. MPI_Wait blocks until a specified non-blocking send or receive operation 

has completed:   MPI_Wait(request, status)
3. Buffered and synchronous calls can be non-blocking: Ibsend, Issend
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MPI_Sendrecv

• Useful for communication patterns where each of a pair of nodes 
both sends and receives a message (two-way communication).

• Executes a blocking send and a blocking receive operation
• Both operations use the same communicator, but have distinct tag 

arguments

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, 
recvbuf, recvcount, recvtype, source, recvtag, comm, 
status)
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One-way blocking/non-blocking combinations

• Blocking send, blocking recv

IF (rank==0) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF

• Non-blocking send, blocking recv

IF (rank==0) THEN
CALL MPI_ISEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_WAIT(req,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF
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More one-way blocking/non-blocking combos

• Blocking send, non-blocking recv

IF (rank==0) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_IRECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_WAIT(req,status,ie)

ENDIF

• Non-blocking send, non-blocking recv

IF (rank==0) THEN
CALL MPI_ISEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req,ie)

ELSEIF (rank==1) THEN
CALL MPI_IRECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,req,ie)

ENDIF
CALL MPI_WAIT(req,status,ie)
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Two-way communication: deadlock!

• Deadlock 1
IF (rank==0) THEN

CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)

ENDIF

• Deadlock 2
IF (rank==0) THEN

CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF
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Two-way communication: solutions

• Solution 1
IF (rank==0) THEN

CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)

ENDIF

• Solution 2
IF (rank==0) THEN

CALL MPI_SENDRECV(sendbuf,count,MPI_REAL,1,tag, &
recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_SENDRECV(sendbuf,count,MPI_REAL,0,tag, &

recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)
ENDIF
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Two-way communication: more solutions

• Solution 3
IF (rank==0) THEN

CALL MPI_IRECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_IRECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)

ENDIF
CALL MPI_WAIT(req,status)

• Solution 4
IF (rank==0) THEN

CALL MPI_BSEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_BSEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF



6/5/2009 www.cac.cornell.edu 41

Two-way communications: summary

CPU 0 CPU 1

Deadlock1 Recv/Send Recv/Send

Deadlock2 Send/Recv Send/Recv

Solution1 Send/Recv Recv/Send

Solution2 SendRecv SendRecv

Solution3 IRecv/Send, Wait IRecv/Send, Wait

Solution4 BSend/Recv BSend/Recv
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Need for collective communication: broadcast

if (mytid == 0 ) {
for (tid=1; tid<ntids; tid++) {
MPI_Send( (void*)a, /* target= */ tid, … );

}
} else {
MPI_Recv( (void*)a, 0, … );

}

• What if one processor wants to send to everyone else?

• Implements a very naive, serial broadcast
• Too primitive

– leaves no room for the OS / switch to optimize
– leaves no room for more efficient algorithms

• Too slow: most receive calls will have a long wait for completion
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• Involve ALL processes within a communicator
• There are three basic types of collective communications:

– Synchronization (MPI_Barrier)
– Data movement (MPI_Bcast/Scatter/Gather/Allgather/AlltoAll)
– Collective computation (MPI_Reduce/Allreduce/Scan)

• Programming considerations & restrictions
– Blocking operation
– No use of message tag argument
– Collective operation within subsets of processes require separate 

grouping and new communicator
– Can only be used with MPI predefined datatypes

MPI collective communications
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• Barrier blocks until all processes in comm have called it
• Useful when measuring communication/computation time

– mpi_barrier(comm, ierr)
– MPI_Barrier(comm)

• Broadcast sends data from root to all processes in comm
– mpi_bcast(data, count, type, root, comm, ierr)
– MPI_Bcast(data, count, type, root, comm)

Barrier synchronization and broadcast
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MPI_Scatter

• Distributes distinct messages from a single source task to each task 
in the communicator

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

IN
IN
IN
OUT
IN
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
root
comm

starting address of send buffer
number of elements sent to each process
data type of send buffer elements
address of receive buffer
number of elements in receive buffer
data type of receive buffer elements
rank of sending process
communicator



6/5/2009 www.cac.cornell.edu 46

MPI_Gather

• Gathers distinct messages from each task in the group to a single 
destination task

• Inverse operation of MPI_Scatter

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

IN
IN
IN
OUT
IN
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
root
comm

address of send buffer
number of elements in send buffer
data type of send buffer elements
starting address of receive buffer
number of elements for any single receive
data type of receive buffer elements
rank of receiving process
communicator
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MPI_Allgather

• Concatenation of data to all tasks in a group
• In effect, each task performs a broadcast operation to the other 

tasks in the communicator

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

IN
IN
IN
OUT
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
comm

address of send buffer
number of elements in send buffer
data type of send buffer elements
starting address of receive buffer
number of elements received from any process
data type of receive buffer elements
communicator
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MPI_Alltoall

• Each task in a group performs a scatter operation, sending a distinct 
message to all the tasks in the group in order by index

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

IN
IN
IN
OUT
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
Comm

starting address of send buffer
number of elements sent to each process
data type of send buffer elements
starting address of receive buffer
number of elements received from any process
data type of receive buffer elements
communicator
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Data movement…

• Broadcast

• Scatter/gather

• Allgather

• Alltoall
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MPI_Reduce

• Applies a reduction operation on all tasks in the communicator and 
places the result in one task

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)

IN
OUT
IN
IN
IN
IN
IN

sendbuf
recvbuf
count
datatype
op
root
comm

address of send buffer
address of receive buffer
number of elements in send buffer
data type of elements of send buffer
reduce operation
rank of root process
communicator
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MPI_Allreduce

• Applies a reduction operation and places the result in all tasks in the 
communicator

• Equivalent to an MPI_Reduce followed by MPI_Bcast

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

IN
OUT
IN
IN
IN
IN

sendbuf
recvbuf
count
datatype
op
comm

address of send buffer
address of receive buffer
number of elements in send buffer
data type of elements of send buffer
operation
communicator
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Name Meaning

MPI_MAX
MPI_MIN
MPI_SUM
MPI_PROD
MPI_LAND
MPI_BAND
MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR
MPI_MAXLOC
MPI_MINLOC

Maximum
Minimum
Sum
Product
Logical and
Bit-wise and
Logical or
Bit-wise or
Logical xor
Logical xor
Max value and location
Min value and location

Reduction operations
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• Reduce

• Scan

Collective computation patterns
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#include <mpi.h>
#define WCOMM MPI_COMM_WORLD
main(int argc, char **argv){
int npes, mype, ierr;
double sum, val; int calc, knt=1;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_size(WCOMM, &npes);
ierr = MPI_Comm_rank(WCOMM, &mype);

val = (double) mype;

ierr=MPI_Allreduce(&val,&sum,knt,MPI_DOUBLE,MPI_SUM,WCOMM);

calc=(npes-1 +npes%2)*(npes/2);
printf(" PE: %d sum=%5.0f calc=%d\n",mype,sum,calc);
ierr = MPI_Finalize();

}

Collective Computation: C Example
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program sum2all
include 'mpif.h'

icomm = MPI_COMM_WORLD
knt = 1
call mpi_init(ierr)
call mpi_comm_rank(icomm,mype,ierr)
call mpi_comm_size(icomm,npes,ierr)
val = dble(mype)

call mpi_allreduce(val,sum,knt,MPI_REAL8,MPI_SUM,icomm,ierr)

ncalc=(npes-1 + mod(npes,2))*(npes/2)
print*,' pe#, sum, calc. sum = ',mype,sum,ncalc
call mpi_finalize(ierr)

end program

Collective Computation: Fortran Example
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The MPI
Collective
Collection!
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References

• MPI-1 and MPI-2 standards
– http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
– http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.htm
– http://www.mcs.anl.gov/mpi/ (other mirror sites)

• Freely available implementations
– MPICH, http://www.mcs.anl.gov/mpi/mpich
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• Books
– Using MPI, by Gropp, Lusk, and Skjellum
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– Parallel Programming with MPI, by Peter Pacheco
– Using MPI-2, by Gropp, Lusk and Thakur
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