
Workshop: Introduction to Parallel Computing on Ranger, July 15, 2010
Based on materials developed by Kent Milfeld at TACC

Steve Lantz

Senior Research Associate

Cornell CAC

Hybrid Programming

with OpenMP and MPI

Steve Lantz

Senior Research Associate

Cornell CAC

Hybrid Programming

with OpenMP and MPI

2

RAM Arrangement on Ranger

• Many nodes distributed memory

– each node has its own local memory

– not directly addressable from other nodes

• Multiple sockets per node

– each node has 4 sockets (chips)

• Multiple cores per socket

– each socket (chip) has 4 cores

• Memory spans all 16 cores shared memory

– node’s full local memory is addressable from any core in any socket

• Memory is attached to sockets

– 4 cores sharing the socket have fastest access to attached memory

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

RAM RAM

RAM RAM

3

How do we deal with NUMA (Non-Uniform Memory Access)?

Standard models for parallel programs assume a uniform architecture –

• Threads for shared memory

– parent process uses pthreads or OpenMP to fork multiple threads

– threads share the same virtual address space

– also known as SMP = Symmetric MultiProcessing

• Message passing for distributed memory

– processes use MPI to pass messages (data) between each other

– each process has its own virtual address space

If we attempt to combine both types of models –

• Hybrid programming

– try to exploit the whole shared/distributed memory hierarchy

Dealing with NUMA

4

Why hybrid?

• Eliminates domain decomposition at node level

• Automatic memory coherency at node level

• Lower (memory) latency and data movement within node

• Can synchronize on memory instead of barrier

Why not hybrid?

• An SMP algorithm created by aggregating MPI parallel components on

a node (or on a socket) may actually run slower

• Possible waste of effort

Why Hybrid? Or Why Not?

5

Motivation for Hybrid

• Balance the computational load

• Reduce memory traffic, especially for memory-bound applications

6

Two Views of a Node

C
P
U

OpenMP

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

MPI

1

2 3
CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU

CPU CPU

CPUCPU 0

7

Two Views = Two Ways to Write Parallel Programs

• OpenMP (or pthreads) only

– launch one process per node

– have each process fork one thread (or maybe more) per core

– share data using shared memory

– can’t share data with a different process (except maybe via file I/O)

• MPI only

– launch one process per core, on one node or on many

– pass messages among processes without concern for location

– (maybe create different communicators intra-node vs. inter-node)

– ignore the potential for any memory to be shared

• With hybrid OpenMP/MPI programming, we want each MPI process

to launch multiple OpenMP threads that can share local memory

8

Some Possible MPI + Thread Configurations

• Treat each node as an SMP

– launch a single MPI process per node

– create parallel threads sharing full-node memory

– typically want 16 threads/node on Ranger, e.g.

• Treat each socket as an SMP

– launch one MPI process on each socket

– create parallel threads sharing same-socket memory

– typically want 4 threads/socket on Ranger, e.g.

• No SMP, ignore shared memory (all MPI)

– assign an MPI process to each core

– in a master/worker paradigm, one process per node may be master

– not really hybrid, may at least make a distinction between nodes

9

Creating Hybrid Configurations

To achieve configurations like these, we must be able to:

• Assign to each process/thread an affinity for some set of cores

• Make sure the allocation of memory is appropriately matched

Master MPI Process + Worker Thread

Single MPI Process on Core

16 MPI Tasks
1 MPI Task
16 Threads/Task

4 MPI Tasks
4 Threads/Task

Worker Thread for Master MPI Process

Pure SMP Node Pure MPI Node

10

NUMA Operations

Where do processes, threads, and memory allocations get assigned?

• If memory were completely uniform, there would be no need to worry

about questions like, “where do processes go?”

• Only for NUMA is the placement of processes/threads and allocated

memory (NUMA control) of any importance

The default NUMA control is set through policy

• The policy is applied whenever a process is executed, or a thread is

forked, or memory is allocated

• These are all events that are directed from within the kernel

NUMA control is managed by the kernel.

NUMA control can be changed with numactl.

11

Process Affinity and Memory Policy

• One would like to set the affinity of a process for a certain socket or

core, and the allocation of data in memory relative to a socket or core

• Individual users can alter kernel policies

(setting Process Affinity and Memory Policy == PAMPer)

– users can PAMPer their own processes

– root can PAMPer any process

– careful, libraries may PAMPer, too!

• Means by which Process Affinity and Memory Policy can be changed:

1. dynamically on a running process (knowing process id)

2. at start of process execution (with wrapper command)

3. within program through F90/C API

12

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

01

32

0,1,2,34,5,6,7

12,13,14,158,9,10,11

0

32

1

Using numactl, at the Process Level

For a Process:

Socket Control

For a Process’s Memory:

Socket Control

For a Process:

Core Control

socket assignment

-N

memory allocation

-l -i --preferred -m

(local, interleaved, preferred,

mandatory)

core assignment

-C

numactl <option socket(s)/core(s)> ./a.out

13

Socket

Affinity
-N {0,1,2,3}

Execute process on cores of this

(these) socket(s) only.

Memory

Policy
-l no argument

Allocate on current socket;

fallback to any other if full.

Memory

Policy
-i {0,1,2,3}

Allocate round robin (interleave)

on these sockets. No fallback.

Memory

Policy
--preferred=

{0,1,2,3}

select one

Allocate on this socket; fallback to

any other if full.

Memory

Policy
-m {0,1,2,3}

Allocate only on this (these)

socket(s). No fallback.

Core

Affinity
-C

{0,1,2,3,4,5,6,7,

8,9,10,11,12,13,

14,15}

Execute process on this (these)

core(s) only.

Quick Guide to numactl

14

job script (Bourne shell) job script (C shell)

... ...

#! -pe 1way 192

...

#! -pe 1way 192

...

export OMP_NUM_THREADS=16 setenv OMP_NUM_THREADS 16

ibrun numactl -i all ./a.out ibrun numactl -i all ./a.out

SMP Nodes

Hybrid batch script for 16 threads/node

• Make sure 1 process per node is created

• Specify total cores allocated by batch (nodes x 16)

• Set number of threads for each process

• PAMPering at job level

– controls behavior (e.g., process-core affinity) for ALL processes

– no simple/standard way to control thread-core affinity with numactl

15

SMP Sockets

Hybrid batch script for 4 tasks/node, 4 threads/task

Example script setup for a square (6x6 = 36) processor topology...

• Make sure 4 processes per node are created (one per socket)

• Specify total cores allocated by batch (nodes x 16)

• Specify actual cores used with MY_NSLOTS

• Set number of threads for each process

• PAMPering at process level, must create script to manage affinity

job script (Bourne shell) job script (C shell)

... ...

#! -pe 4way 48 #! -pe 4way 48

export MY_SLOTS=36 setenv MY_NSLOTS 36

export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4

ibrun numa.sh ibrun numa.csh

16

numa.sh numa.csh

#!/bin/bash

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

#TasksPerNode

TPN=`echo $PE|sed 's/way//'`

[! $TPN] && echo TPN null!

[! $TPN] && exit 1

#LocalRank, Socket

LR=$(($PMI_RANK % $TPN)))

SO=$(((4*($TPN-$LR))/$TPN))

numactl -N $SO -m $SO ./a.out

#!/bin/csh

setenv MV2_USE_AFFINITY 0

setenv MV2_ENABLE_AFFINITY 0

#TasksPerNode

set TPN=`echo $PE|sed 's/way//'`

if(! ${%TPN}) echo TPN null!

if(! ${%TPN}) exit 1

#LocalRank, Socket

@ LR = $PMI_RANK % $TPN

@ SO = (4*($TPN-$LR))/$TPN

numactl -N $SO -m $SO ./a.out

• Example script to extract MPI rank, set numactl options per process

– on Ranger, MPI ranks are always assigned sequentially, node by node

• Low local ranks high sockets: tie 0 to socket 3 for best networking

Script for Socket Affinity

17

Basic Hybrid Program Template

Start with MPI initialization MPI_Init

...

(Serial regions are executed by the

master thread of the MPI process)

MPI_Call

...

Create OMP parallel regions within

each MPI process

OMP parallel

...

– MPI calls may be allowed here too

– MPI rank is known to all threads

MPI_Call

...

end parallel

...

Call MPI in single-threaded regions MPI_Call

...

Finalize MPI MPI_Finalize

18

Types of MPI Calls Among Threads

Single-threaded messaging

• Call MPI from a serial region

• Call MPI from a single thread

within a parallel region

Multi-threaded messaging

• Call MPI from multiple threads

within a parallel region

• Requires an implementation of

MPI that is thread-safe

Node Node

Rank to rank

Node Node

rank-thread ID to rank-thread ID

19

• Consider thread safety when calling MPI from threads

• Use MPI_Init_thread to select/determine the level of thread support

– Supported in MPI-2, substitute for the usual MPI_Init

• Thread safety is identified/controlled by MPI’s provided types

– Single means no multi-threading

– Funneled means only the master thread can call MPI

– Serialized means multiple threads can call MPI,

but only 1 call can be in progress at a time

– Multiple means MPI is thread safe

• Monotonic values are assigned to parameters

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED

< MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

MPI-2 and Thread Safety

20

MPI-2’s MPI_Init_thread

• Input: rqd, or “required” (integer)

– Indicates the desired level of thread support

• Output: pvd, or “provided” (integer)

– Indicates the available level of thread support

• If thread level rqd is supported, the call returns pvd = rqd

• Otherwise, pvd returns the highest provided level of support

call MPI_Init_thread(irqd, ipvd, ierr)

int MPI_Init_thread (int *argc, char ***argv, int rqd, int *pvd)

int MPI::Init_thread(int& argc, char**& argv, int rqd)

Syntax:

21

MPI-2 Thread Support Levels

Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED

Process may be multi-threaded,

but only the main thread will make

MPI calls (calls are “funneled” to

main thread). *Default*

MPI_THREAD_SERIALIZE

Process may be multi-threaded,

and any thread can make MPI

calls, but threads cannot execute

MPI calls concurrently; they must

take turns (calls are “serialized”).

MPI_THREAD_MULTIPLE
Multiple threads may call MPI, with

no restriction.

22

Fortran C

include 'mpif.h'

program hybsimp

call MPI_Init(ie)

call MPI_Comm_rank(...irk,ie)

call MPI_Comm_size(...isz,ie)

!Setup shared mem, comp/comm

!$OMP parallel do

do i=1,n

<work>

enddo

!Compute & communicate

call MPI_Finalize(ierr)

end

#include <mpi.h>

int main(int argc,

char **argv) {

int rank, size, ie, i;

ie= MPI_Init(&argc,&argv[]);

ie= MPI_Comm_rank(...&rank);

ie= MPI_Comm_size(...&size);

//Setup shared mem, comp/comm

#pragma omp parallel for

for(i=0; i<n; i++){

<work>

}

// compute & communicate

ie= MPI_Finalize();

}

Example: Single-Threaded MPI Calls

23

Funneled MPI Calls via Master

• Must have support for MPI_THREAD_FUNNELED or higher

• Best to use OMP_BARRIER

– there is no implicit barrier in the master workshare construct,

OMP_MASTER

– in the example, the master thread will execute a single MPI call within the

OMP_MASTER construct

– all other threads will be sleeping

24

Example: Funneled MPI Calls via Master

Fortran C

include 'mpif.h'

program hybmas

!$OMP parallel

!$OMP barrier

!$OMP master

call MPI_<Whatever>(...,ie)

!$OMP end master

!$OMP barrier

!$OMP end parallel

end

#include <mpi.h>

int main(int argc,

char **argv) {

int rank, size, ie, i;

#pragma omp parallel

{

#pragma omp barrier

#pragma omp master

{

ie= MPI_<Whatever>(...);

}

#pragma omp barrier

}

}

25

Serialized MPI Calls and OpenMP

• Must have support for MPI_THREAD_SERIALIZED or higher

• Best to use OMP_BARRIER only at beginning, since there is an

implicit barrier in the SINGLE workshare construct, OMP_SINGLE

– Example is the simplest one: any thread (not necessarily master)

will execute a single MPI call within the OMP_SINGLE construct

– All other threads will be sleeping

26

Example: Serialized MPI Calls and OpenMP

Fortran C

include 'mpif.h'

program hybsing

call MPI_Init_thread(&

MPI_THREAD_SERIALIZED,ipvd,ie)

!$OMP parallel

!$OMP barrier

!$OMP single

call MPI_<Whatever>(...,ie)

!$OMP end single

!Don't need OMP barrier

!$OMP end parallel

end

#include <mpi.h>

int main(int argc,

char **argv) {

int rank, size, ie, i;

ie= MPI_Init_thread(

MPI_THREAD_SERIALIZED,ipvd);

#pragma omp parallel

{

#pragma omp barrier

#pragma omp master

{

ie= MPI_<Whatever>(...);

}

//Don't need omp barrier

}

}

27

Overlapping Work & MPI Calls

• One core is capable of saturating the lanes of the PCIe network link...

– Why use all cores to communicate?

– Instead, communicate using just one or several cores

– Can do work with the rest during communication

• Must have support for MPI_THREAD_FUNNELED or higher to do

this

• Can be difficult to manage and load-balance!

28

Example: Overlapping Work & MPI Calls

Fortran C

include 'mpif.h'

program hybsing

!$OMP parallel

if (ithread .eq. 0) then

call MPI_<Whatever>(...,ie)

else

<work>

endif

!$OMP end parallel

end

#include <mpi.h>

int main(int argc,

char **argv) {

int rank, size, ie, i;

#pragma omp parallel

{

if (thread == 0){

ie= MPI_<Whatever>(...);

}

if(thread != 0){

<work>

}

}

}

29

Multiple Threads Calling MPI

• Thread ID as well as rank can be used in communication

• Technique is illustrated in multi-thread “ping” (send/receive) example

30

call mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided,ierr)

call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)

call mpi_comm_size(MPI_COMM_WORLD,nranks, ierr)
…

!$OMP parallel private(j, ithread, nthreads)
nthreads=OMP_GET_NUM_THREADS()
ithread =OMP_GET_THREAD_NUM()
call pwork(ithread, irank, nthreads, nranks…)
if(irank == 0) then

call mpi_send(ithread,1,MPI_INTEGER, 1, ithread, MPI_COMM_WORLD, ierr)

else

call mpi_recv(j,1,MPI_INTEGER, 0, ithread, MPI_COMM_WORLD, istat, ierr)

print*, "Yep, this is ",irank," thread ", ithread," I received from ", j
endif

!$OMP END PARALLEL
end

Communicate between ranks.

Threads use tags to differentiate.

Example: Multiple Threads Calling MPI

31

NUMA Control in Code, at the Thread Level

• Within a code, Scheduling Affinity and Memory Policy can be

examined and changed through:

– sched_getaffinity, sched_setaffinity

– get_mempolicy, set_mempolicy

• This is the only way to set affinities and policies that differ per thread

• To make scheduling assignments, set bits in a mask:

0 100000000000000

0 000000000000001

Assignment to Core 0

Assignment to Core 15

Assignment to Core 0 or 150 100000000000001

32

Code Example for Scheduling Affinity

...

#include <spawn.h> //C API parameters and prototypes

...

int icore=3; //Set core number

cpu_set_t cpu_mask; //Allocate mask

...

CPU_ZERO(&cpu_mask); //Set mask to zero

CPU_SET(icore,&cpu_mask); //Set mask with core #

err = sched_setaffinity((pid_t)0 , //Set the affinity

sizeof(cpu_mask),

&cpu_mask);

33

Conclusions and Future Prospects

• On NUMA systems like Ranger, placement and binding of processes

and their associated memory are important performance

considerations.

• Process Affinity and Memory Policy have a significant effect on pure

MPI, pure OpenMP, and Hybrid codes.

• Simple numactl commands and APIs allow users to control affinity of

processes and threads and memory assignments.

• Future prospects for hybrid programming:

– 8-core and 16-core socket systems are on the way, so even more effort

will be focused on process scheduling and data locality.

– Expect to see more multi-threaded libraries; be alert for their potential

interaction with your own multithreading strategy.

34

References

• Yun (Helen) He and Chris Ding, Lawrence Berkeley National

Laboratory, June 24, 2004: Hybrid OpenMP and MPI Programming

and Tuning (NUG2004).

www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt

• Texas Advanced Computing Center: Ranger User Guide, see numa

section. www.tacc.utexas.edu/services/userguides/ranger

• Message Passing Interface Forum: MPI-2: MPI and Threads (specific

section of the MPI-2 report).

http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node162.htm

• Intel Corp.: Thread Affinity Interface (Linux and Windows), from the

Intel Fortran Compiler User and Reference Guides.

http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/extfile/

optaps_for/common/optaps_openmp_thread_affinity.htm

http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.tacc.utexas.edu/services/userguides/ranger
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

