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What is Parallel Programming?
Using more than one processor or computer to complete a task

– Each processor works on its section of the problem (functional parallelism)

– Each processor works on its section of the data (data parallelism)

– Processors can exchange information
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Grid of Problem to be solved

CPU #1 works on this area 
of the problem

CPU #3 works on this area
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Why Do Parallel Programming?
• Limits of single CPU computing

– performance
– available memory

• Parallel computing allows one to:
– solve problems that don’t fit on a single CPU
– solve problems that can’t be solved in a reasonable time

• We can solve…
– larger problems
– faster
– more cases
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Terminology (1)

• serial code is a single thread of execution working on a single data item at any 
one time

• parallel code has more than one thing happening at a time. This could be
– A single thread of execution operating on multiple data items simultaneously
– Multiple threads of execution in a single executable
– Multiple executables all working on the same problem
– Any combination of the above

• task is the name we use for an instance of an executable. Each task has its own 
virtual address space and may have multiple threads.

7/13/2010 www.cac.cornell.edu 6



Terminology (2)

• node:  a discrete unit of a computer system that typically runs its own instance 
of the operating system

• core:   a processing unit on a computer chip that is able to support a thread of 
execution; can refer either to a single core or to all of the cores on a particular 
chip

• cluster: a collection of machines or nodes that function in someway as a single 
resource.

• grid: the software stack designed to handle the technical and social challenges 
of sharing resources across networking and institutional boundaries. grid also 
applies to the groups that have reached agreements to share their resources.
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Limits of Parallel Computing

• Theoretical Upper Limits
– Amdahl’s Law

• Practical Limits
– Load balancing (waiting)
– Conflicts (accesses to shared memory)
– Communications
– I/O (file system access)
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Theoretical Upper Limits to Performance

• All parallel programs contain:
– parallel sections (we hope!)
– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness
serial portion parallel portion

1 task    
2 tasks  

4 tasks   

• Amdahl’s Law states this formally
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Amdahl’s Law

• Amdahl’s Law places a strict limit on the speedup that can be 
realized by using multiple processors.
– Effect of multiple processors on run time

t n = (f p / N + f s )t 1

– Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N  = number of processors
• t 1 = time to run on one processor
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Limit Cases of Amdahl’s Law

• Speed up formula:

S = 1 / (fs + fp / N)

Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors

Case:
1.  fs = 0, fp = 1, then S = N
2.  N infinity: S = 1/fs; if 10% of the code is sequential, you will never 

speed up by more than 10, no matter the number of processors.
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Ilustration of Amdahl’s Law
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More Terminology

• synchronization: the temporal coordination of parallel tasks. It involves 
waiting until two or more tasks reach a specified point (a sync point) before 
continuing any of the tasks.

• parallel overhead: the amount of time required to coordinate parallel 
tasks, as opposed to doing useful work, including time to start and terminate 
tasks, communication, move data.

• granularity: a measure of the ratio of the amount of computation done in a 
parallel task to the amount of communication.
– fine-grained (very little computation per communication-byte)
– coarse-grained (extensive computation per communication-byte).
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Practical Limits: Amdahl’s Law vs. Reality
• Amdahl’s Law shows a theoretical upper limit || speedup
• In reality, the situation is even worse than predicted by Amdahl’s Law due to:
• – Load balancing (waiting)
• – Scheduling (shared processors or memory)
• – Communications
• – I/O
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Is it really worth it to go Parallel?
• Writing effective parallel applications is difficult!!

– Load balance is important
– Communication can limit parallel efficiency
– Serial time can dominate

• Is it worth your time to rewrite your application?
– Do the CPU requirements justify parallelization? Is your problem really `large’?
– Is there a library that does what you need (parallel FFT, linear system solving)
– Will the code be used more than once?
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Types of Parallel Computers (Flynn's taxonomy)
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Types of Parallel Computers (Memory Model)

• Nearly all parallel machines these days are multiple instruction, multiple 
data (MIMD)

• A much more useful way to classify modern parallel computers is by their 
memory model
– shared memory
– distributed memory
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Shared and Distributed Memory Models
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Shared memory: single address space. All 
processors have access to a pool of shared 
memory; easy to build and program, good 
price-performance for small numbers of 
processors; predictable performance due to 
UMA .(example: SGI Altix) 

Methods of memory access :
- Bus
- Crossbar

Distributed memory: each processor
has its own local memory. Must do 
message passing to exchange data 
between processors. cc-NUMA enables 
larger number of processors and shared 
memory address space than SMPs; still 
easy to program, but harder and more 
expensive to build. (example: Clusters)

Methods of memory access :
- various topological interconnects

Network
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Shared Memory vs. Distributed Memory

• Tools can be developed to make any system appear to look like a 
different kind of system
– distributed memory systems can be programmed as if they have shared 

memory, and vice versa
– such tools do not produce the most efficient code, but might enable 

portability

• HOWEVER, the most natural way to program any machine is to use 
tools and languages that express the algorithm explicitly for the 
architecture.
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Programming Parallel Computers
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• Programming single-processor systems is (relatively) easy because 
they have a single thread of execution and a single address space.

• Programming shared memory systems can benefit from the single 
address space

• Programming distributed memory systems is the most difficult due to 
multiple address spaces and need to access remote data

• Both shared memory and distributed memory parallel computers can 
be programmed in a data parallel, SIMD fashion and they also can 
perform independent operations on different data (MIMD) and 
implement task parallelism.



Data vs. Functional Parallelism

• Partition by Data (data parallelism)
Each process does the same work on a unique piece of data
– First divide the data. Each process then becomes responsible for whatever 
work is needed to process its data.
– Data placement is an essential part of a data-parallel algorithm
– Usually more scalable than functional parallelism
– Can be programmed at a high level with OpenMP, or at a lower level 
(subroutine calls) using a message-passing library like MPI.

• Partition by Task (functional parallelism)
Each process performs a different "function" or executes a different code section
– First identify functions, then look at the data requirements
– Commonly programmed with message-passing libraries
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Data Parallel Programming Example
One code will run on 2 CPUs
Program has array of data to be operated on by 2 CPUs so array is split in two.
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program:
… 
if CPU=a then

low_limit=1
upper_limit=50

elseif CPU=b then
low_limit=51
upper_limit=100

end if
do I = low_limit, 
upper_limit

work on A(I)
end do
...
end program

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit, 
upper_limit

work on A(I)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit, 
upper_limit

work on A(I)
end do
…
end program
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Single Program, Multiple Data (SPMD)

SPMD: dominant programming model for shared and distributed 
memory machines.
– One source code is written
– Code can have conditional execution based on which processor is 

executing the copy
– All copies of code are started simultaneously and communicate and 

sync with each other periodically
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SPMD Programming Model
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Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c



Task Parallel Programming Example
One code will run on 2 CPUs
Program has 2 tasks (a and b) to be done by 2 CPUs

7/13/2010 www.cac.cornell.edu 28

program.f:
… 
initialize
...
if CPU=a then

do task a
elseif CPU=b then

do task b
end if
….
end program

CPU A CPU B

program.f:
…
initialize
…
do task a
…
end program

program.f:
…
initialize
…
do task b
…
end program
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Shared Memory Programming: OpenMP

• Shared memory systems (SMPs and cc-NUMAs) have a single 
address space:
– applications can be developed in which loop iterations (with no 

dependencies) are executed by different processors
– shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes
– OpenMP is the new standard for shared memory programming 

(compiler directives)
– Vendors offer native compiler directives
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Accessing Shared Variables

• If multiple processors want to write to a shared variable at the same time, 
there could be conflicts :

– Process 1 and 2
– read X
– compute X+1
– write X 

• Programmer, language, and/or 
architecture must provide ways 
of resolving conflicts
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Shared variable X in 
memory

X + 1 in proc1 X + 1 in proc2



OpenMP Example #1: Parallel Loop
!$OMP PARALLEL DO
do i=1,128
b(i) = a(i) + c(i)

end do

!$OMP END PARALLEL DO 

The first directive specifies that the loop immediately following should be 
executed in parallel. The second directive specifies the end of the parallel 
section (optional).

For codes that spend the majority of their time executing the content of 
simple loops, the PARALLEL DO directive can result in significant parallel 
performance.
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OpenMP Example #2: Private Variables
!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
TEMP = A(I)/B(I)
C(I) = TEMP + SQRT(TEMP)

end do
!$OMP END PARALLEL DO

In this loop, each processor needs its own private copy of the variable 
TEMP. If TEMP were shared, the result would be unpredictable since 
multiple processors would be writing to the same memory location.
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Distributed Memory Programming: MPI

Distributed memory systems have separate address spaces for 
each processor

– Local memory accessed faster than remote memory

– Data must be manually decomposed

– MPI is the standard for distributed memory programming (library of 
subprogram calls)
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Data Decomposition

For distributed memory systems, the ‘whole’ grid or sum of particles 
is decomposed to the individual nodes
– Each node works on its section of the problem
– Nodes can exchange information

7/13/2010 www.cac.cornell.edu 35

Grid of Problem to be solved

CPU #1 works on this area 
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CPU #3 works on this area
of the problem
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of the problem

y

x



MPI Example
#include <. . . .>
#include "mpi.h"
main(int argc, char **argv)
{

char message[20];
int i, rank, size, type = 99;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

strcpy(message, "Hello, world");
for (i = 1; i < size; i++)

MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
}
else

MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);
printf( "Message from process = %d : %.13s\n", rank,message);
MPI_Finalize();

}
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MPI: Sends and Receives

MPI programs must send and receive data between the processors 
(communication)

The most basic calls in MPI (besides the initialization, rank/size, and 
finalization calls) are:
– MPI_Send
– MPI_Recv

These calls are blocking: the source processor issuing the 
send/receive cannot move to the next statement until the target 
processor issues the matching receive/send.
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Programming Multi-tiered Systems

• Systems with multiple shared memory nodes are becoming common 
for reasons of economics and engineering.

• Memory is shared at the node level, distributed above that:
– Applications can be written using OpenMP + MPI
– Developing apps with only MPI usually possible
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