
Introduction to Parallel Programming

Linda Woodard
CAC

14 July 2010

Introduction to Parallel Computing on Ranger

7/13/2010 www.cac.cornell.edu 1

What is Parallel Programming?
Using more than one processor or computer to complete a task

– Each processor works on its section of the problem (functional parallelism)

– Each processor works on its section of the data (data parallelism)

– Processors can exchange information

7/13/2010 www.cac.cornell.edu 2

Grid of Problem to be solved

CPU #1 works on this area
of the problem

CPU #3 works on this area
of the problem

CPU #4 works on this area
of the problem

CPU #2 works on this area
of the problem

y

x

Forest Inventory with Ranger Bob

7/13/2010 www.cac.cornell.edu 3

Why Do Parallel Programming?
• Limits of single CPU computing

– performance
– available memory

• Parallel computing allows one to:
– solve problems that don’t fit on a single CPU
– solve problems that can’t be solved in a reasonable time

• We can solve…
– larger problems
– faster
– more cases

7/13/2010 www.cac.cornell.edu 4

Forest Inventory with Ranger Bob

7/13/2010 www.cac.cornell.edu 5

Terminology (1)

• serial code is a single thread of execution working on a single data item at any
one time

• parallel code has more than one thing happening at a time. This could be
– A single thread of execution operating on multiple data items simultaneously
– Multiple threads of execution in a single executable
– Multiple executables all working on the same problem
– Any combination of the above

• task is the name we use for an instance of an executable. Each task has its own
virtual address space and may have multiple threads.

7/13/2010 www.cac.cornell.edu 6

Terminology (2)

• node: a discrete unit of a computer system that typically runs its own instance
of the operating system

• core: a processing unit on a computer chip that is able to support a thread of
execution; can refer either to a single core or to all of the cores on a particular
chip

• cluster: a collection of machines or nodes that function in someway as a single
resource.

• grid: the software stack designed to handle the technical and social challenges
of sharing resources across networking and institutional boundaries. grid also
applies to the groups that have reached agreements to share their resources.

7/13/2010 www.cac.cornell.edu 7

Limits of Parallel Computing

• Theoretical Upper Limits
– Amdahl’s Law

• Practical Limits
– Load balancing (waiting)
– Conflicts (accesses to shared memory)
– Communications
– I/O (file system access)

7/13/2010 www.cac.cornell.edu 8

Theoretical Upper Limits to Performance

• All parallel programs contain:
– parallel sections (we hope!)
– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness
serial portion parallel portion

1 task
2 tasks

4 tasks

• Amdahl’s Law states this formally

7/13/2010 www.cac.cornell.edu 9

Amdahl’s Law

• Amdahl’s Law places a strict limit on the speedup that can be
realized by using multiple processors.
– Effect of multiple processors on run time

t n = (f p / N + f s)t 1

– Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors
• t 1 = time to run on one processor

7/13/2010 www.cac.cornell.edu 10

Limit Cases of Amdahl’s Law

• Speed up formula:

S = 1 / (fs + fp / N)

Where
• fs = serial fraction of code
• fp = parallel fraction of code
• N = number of processors

Case:
1. fs = 0, fp = 1, then S = N
2. N infinity: S = 1/fs; if 10% of the code is sequential, you will never

speed up by more than 10, no matter the number of processors.

7/13/2010 www.cac.cornell.edu 11

Ilustration of Amdahl’s Law

7/13/2010 www.cac.cornell.edu 12

0

50

100

150

200

250

0 50 100 150 200 250
Number of processors

fp = 1.000
fp = 0.999
fp = 0.990
fp = 0.900S

More Terminology

• synchronization: the temporal coordination of parallel tasks. It involves
waiting until two or more tasks reach a specified point (a sync point) before
continuing any of the tasks.

• parallel overhead: the amount of time required to coordinate parallel
tasks, as opposed to doing useful work, including time to start and terminate
tasks, communication, move data.

• granularity: a measure of the ratio of the amount of computation done in a
parallel task to the amount of communication.
– fine-grained (very little computation per communication-byte)
– coarse-grained (extensive computation per communication-byte).

7/13/2010 www.cac.cornell.edu 13

Practical Limits: Amdahl’s Law vs. Reality
• Amdahl’s Law shows a theoretical upper limit || speedup
• In reality, the situation is even worse than predicted by Amdahl’s Law due to:
• – Load balancing (waiting)
• – Scheduling (shared processors or memory)
• – Communications
• – I/O

7/13/2010 www.cac.cornell.edu 14

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250
Number of processors

Amdahl's Law
Reality

fp = 0.99

S

Forest Inventory with Ranger Bob

7/13/2010 www.cac.cornell.edu 15

Is it really worth it to go Parallel?
• Writing effective parallel applications is difficult!!

– Load balance is important
– Communication can limit parallel efficiency
– Serial time can dominate

• Is it worth your time to rewrite your application?
– Do the CPU requirements justify parallelization? Is your problem really `large’?
– Is there a library that does what you need (parallel FFT, linear system solving)
– Will the code be used more than once?

7/13/2010 www.cac.cornell.edu 16

Types of Parallel Computers (Flynn's taxonomy)

7/13/2010 www.cac.cornell.edu 17

Single Instruction
Single Data

SISD

Single Instruction
Multiple Data

SIMD

Multiple Instruction
Single Data

MISD

Multiple Instruction
Multiple Data

MIMD

Single Multiple

Data Stream

Multiple

Single

Instruction Stream

Types of Parallel Computers (Memory Model)

• Nearly all parallel machines these days are multiple instruction, multiple
data (MIMD)

• A much more useful way to classify modern parallel computers is by their
memory model
– shared memory
– distributed memory

7/13/2010 www.cac.cornell.edu 18

Shared and Distributed Memory Models

7/13/2010 www.cac.cornell.edu 19

Shared memory: single address space. All
processors have access to a pool of shared
memory; easy to build and program, good
price-performance for small numbers of
processors; predictable performance due to
UMA .(example: SGI Altix)

Methods of memory access :
- Bus
- Crossbar

Distributed memory: each processor
has its own local memory. Must do
message passing to exchange data
between processors. cc-NUMA enables
larger number of processors and shared
memory address space than SMPs; still
easy to program, but harder and more
expensive to build. (example: Clusters)

Methods of memory access :
- various topological interconnects

Network

P

M

P P P P P

M M M M M

Memory

Bus

P P P P P P

Ranger

7/13/2010 www.cac.cornell.edu 20

Shared Memory vs. Distributed Memory

• Tools can be developed to make any system appear to look like a
different kind of system
– distributed memory systems can be programmed as if they have shared

memory, and vice versa
– such tools do not produce the most efficient code, but might enable

portability

• HOWEVER, the most natural way to program any machine is to use
tools and languages that express the algorithm explicitly for the
architecture.

7/13/2010 www.cac.cornell.edu 21

Programming Parallel Computers

7/13/2010 www.cac.cornell.edu 22

• Programming single-processor systems is (relatively) easy because
they have a single thread of execution and a single address space.

• Programming shared memory systems can benefit from the single
address space

• Programming distributed memory systems is the most difficult due to
multiple address spaces and need to access remote data

• Both shared memory and distributed memory parallel computers can
be programmed in a data parallel, SIMD fashion and they also can
perform independent operations on different data (MIMD) and
implement task parallelism.

Data vs. Functional Parallelism

• Partition by Data (data parallelism)
Each process does the same work on a unique piece of data
– First divide the data. Each process then becomes responsible for whatever
work is needed to process its data.
– Data placement is an essential part of a data-parallel algorithm
– Usually more scalable than functional parallelism
– Can be programmed at a high level with OpenMP, or at a lower level
(subroutine calls) using a message-passing library like MPI.

• Partition by Task (functional parallelism)
Each process performs a different "function" or executes a different code section
– First identify functions, then look at the data requirements
– Commonly programmed with message-passing libraries

7/13/2010 www.cac.cornell.edu 23

Data Parallel Programming Example
One code will run on 2 CPUs
Program has array of data to be operated on by 2 CPUs so array is split in two.

7/13/2010 www.cac.cornell.edu 24

program:
…
if CPU=a then

low_limit=1
upper_limit=50

elseif CPU=b then
low_limit=51
upper_limit=100

end if
do I = low_limit,
upper_limit

work on A(I)
end do
...
end program

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit,
upper_limit

work on A(I)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit,
upper_limit

work on A(I)
end do
…
end program

Forest Inventory with Ranger Bob

7/13/2010 www.cac.cornell.edu 25

Single Program, Multiple Data (SPMD)

SPMD: dominant programming model for shared and distributed
memory machines.
– One source code is written
– Code can have conditional execution based on which processor is

executing the copy
– All copies of code are started simultaneously and communicate and

sync with each other periodically

7/13/2010 www.cac.cornell.edu 26

SPMD Programming Model

7/13/2010 www.cac.cornell.edu 27

Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c

Task Parallel Programming Example
One code will run on 2 CPUs
Program has 2 tasks (a and b) to be done by 2 CPUs

7/13/2010 www.cac.cornell.edu 28

program.f:
…
initialize
...
if CPU=a then

do task a
elseif CPU=b then

do task b
end if
….
end program

CPU A CPU B

program.f:
…
initialize
…
do task a
…
end program

program.f:
…
initialize
…
do task b
…
end program

Forest Inventory with Ranger Bob

7/13/2010 www.cac.cornell.edu 29

Shared Memory Programming: OpenMP

• Shared memory systems (SMPs and cc-NUMAs) have a single
address space:
– applications can be developed in which loop iterations (with no

dependencies) are executed by different processors
– shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes
– OpenMP is the new standard for shared memory programming

(compiler directives)
– Vendors offer native compiler directives

7/13/2010 www.cac.cornell.edu 30

Accessing Shared Variables

• If multiple processors want to write to a shared variable at the same time,
there could be conflicts :

– Process 1 and 2
– read X
– compute X+1
– write X

• Programmer, language, and/or
architecture must provide ways
of resolving conflicts

7/13/2010 www.cac.cornell.edu 31

Shared variable X in
memory

X + 1 in proc1 X + 1 in proc2

OpenMP Example #1: Parallel Loop
!$OMP PARALLEL DO
do i=1,128
b(i) = a(i) + c(i)

end do

!$OMP END PARALLEL DO

The first directive specifies that the loop immediately following should be
executed in parallel. The second directive specifies the end of the parallel
section (optional).

For codes that spend the majority of their time executing the content of
simple loops, the PARALLEL DO directive can result in significant parallel
performance.

7/13/2010 www.cac.cornell.edu 32

OpenMP Example #2: Private Variables
!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
TEMP = A(I)/B(I)
C(I) = TEMP + SQRT(TEMP)

end do
!$OMP END PARALLEL DO

In this loop, each processor needs its own private copy of the variable
TEMP. If TEMP were shared, the result would be unpredictable since
multiple processors would be writing to the same memory location.

7/13/2010 www.cac.cornell.edu 33

Distributed Memory Programming: MPI

Distributed memory systems have separate address spaces for
each processor

– Local memory accessed faster than remote memory

– Data must be manually decomposed

– MPI is the standard for distributed memory programming (library of
subprogram calls)

7/13/2010 www.cac.cornell.edu 34

Data Decomposition

For distributed memory systems, the ‘whole’ grid or sum of particles
is decomposed to the individual nodes
– Each node works on its section of the problem
– Nodes can exchange information

7/13/2010 www.cac.cornell.edu 35

Grid of Problem to be solved

CPU #1 works on this area
of the problem

CPU #3 works on this area
of the problem

CPU #4 works on this area
of the problem

CPU #2 works on this area
of the problem

y

x

MPI Example
#include <. . . .>
#include "mpi.h"
main(int argc, char **argv)
{

char message[20];
int i, rank, size, type = 99;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

strcpy(message, "Hello, world");
for (i = 1; i < size; i++)

MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
}
else

MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);
printf("Message from process = %d : %.13s\n", rank,message);
MPI_Finalize();

}

7/13/2010 www.cac.cornell.edu 36

MPI: Sends and Receives

MPI programs must send and receive data between the processors
(communication)

The most basic calls in MPI (besides the initialization, rank/size, and
finalization calls) are:
– MPI_Send
– MPI_Recv

These calls are blocking: the source processor issuing the
send/receive cannot move to the next statement until the target
processor issues the matching receive/send.

7/13/2010 www.cac.cornell.edu 37

Programming Multi-tiered Systems

• Systems with multiple shared memory nodes are becoming common
for reasons of economics and engineering.

• Memory is shared at the node level, distributed above that:
– Applications can be written using OpenMP + MPI
– Developing apps with only MPI usually possible

7/13/2010 www.cac.cornell.edu 38

	Introduction to Parallel Programming
	What is Parallel Programming?
	Forest Inventory with Ranger Bob
	Why Do Parallel Programming?
	Forest Inventory with Ranger Bob
	Terminology (1)
	Terminology (2)
	Limits of Parallel Computing
	Theoretical Upper Limits to Performance
	Amdahl’s Law
	Limit Cases of Amdahl’s Law
	Ilustration of Amdahl’s Law
	More Terminology
	Practical Limits: Amdahl’s Law vs. Reality
	Forest Inventory with Ranger Bob
	Is it really worth it to go Parallel?
	Types of Parallel Computers (Flynn's taxonomy)
	Types of Parallel Computers (Memory Model)
	Shared and Distributed Memory Models
	Ranger
	Shared Memory vs. Distributed Memory
	Programming Parallel Computers
	Data vs. Functional Parallelism
	Data Parallel Programming Example
	Forest Inventory with Ranger Bob
	Single Program, Multiple Data (SPMD)
	SPMD Programming Model
	Task Parallel Programming Example
	Forest Inventory with Ranger Bob
	Shared Memory Programming: OpenMP
	Accessing Shared Variables
	OpenMP Example #1: Parallel Loop
	OpenMP Example #2: Private Variables
	Distributed Memory Programming: MPI
	Data Decomposition
	MPI Example
	MPI: Sends and Receives
	Programming Multi-tiered Systems

