
Introduction to

Scientific Visualization

Kelly Gaither

September 2, 2010

Longhorn Visualization and Data

Analysis

• In November 2008, NSF accepted proposals for

the Extreme Digital Resources for Science and

Engineering

• The Longhorn project was proposed as a next

generation response to TeraGrid’s growing

visualization and data analysis needs

Spur - Visualization System

• 128 cores, 1 TB distributed

memory, 32 GPUs

• spur.tacc.utexas.edu

login node, no GPUs

don’t run apps here!

• ivisbig.ranger

Sun Fire X4600 server
– 8 AMD Opteron dual-core

CPUs @ 3 GHz

– 256 GB memory

– 4 NVIDIA FX5600 GPUs

• ivis[1-7].ranger

Sun Fire X4440 server
– 4 AMD Opteron quad-core

CPUs @ 2.3 GHz

– 128 GB memory

– 4 NVIDIA FX5600 GPUs

Spur / Ranger topology

spur

login3.ranger

Login Nodes

login4.ranger

Compute Nodes

Vis nodes
ivis[1-7|big]

HPC nodes
ixxx-xxx

vis

queue

normal

development

<etc>

queues

File System

$HOME

$WORK

$SCRATCH

Connecting to Spur

spur

laptop

or

workstation

ssh <user>@spur.tacc.utexas.edu

qsub /share/sge/default/pe_scripts/job.vnc

touch ~/vncserver.out

tail –f ~/vncserver.out

spur

laptop

or

workstation

ssh –L <port>:spur.tacc.utexas.edu:<port>

 <user>@spur.tacc.utexas.edu

VNC server

on vis node

 ivis[1-7|big]

spur

laptop

or

workstation

vncviewer localhost::<port>
automatic

port forwarding

to vis node

establishes

secure tunnel

to spur vnc port

localhost connection forwarded

to spur via ssh tunnel

contains vnc port

info after job launches

Spur Usage

XD Vis Requirements Analysis

• Surveyed members of the science community

via personal interviews and email surveys

• Received ~60 individual responses

MPS,
44%

CISE,
6%

BBS,
24%

GEO, 8%

ENG,
18%

NSF Fields of Science Represented

XD Vis Requirements Analysis
Requirement % Users Requested

User Support and Consulting 96%

Large-Scale DAV Tools/Resources 39%

Remote/Collaborative DAV Services 27%

Computational Steering 10%

In-simulation DAV Tools 6%

Tools for 3D Measurement and Query 6%

Tools for Multiple Length and Time

Scales

6%

(DAV = Data Analysis/Visualization)

Longhorn Configuration
(256 Nodes, 2048 Cores, 512 GPUs, 14.5 TG Aggregate Memory)

• 256 Dell Quad Core Intel Nehalem Nodes

– 240 Nodes

• Dual socket, quad core per socket: 8 cores/node

• 48 GB shared memory/node (6 GB/core)

• 73 GB Local Disk

• 2 Nvidia GPUs/node (FX 5800 - 4GB RAM)

– 16 Nodes

• Dual socket, quad core per socket: 8 cores/node

• 144 GB shared memory/node (18 GB/core)

• 73 GB Local Disk

• 2 Nvidia GPUs/node (FX 5800 – 4GB RAM)

– ~14.5 TB aggregate memory

• QDR InfiniBand Interconnect

• Direct Connection to Ranger’s Lustre Parallel File System

• 10G Connection to 210 TB Local Lustre Parallel File System

• Jobs launched through SGE

Longhorn’s Lustre File System ($SCRATCH)

• OSS’s on Longhorn are built on Dell Nehalem Servers Connected to
MD10000 Storage Vaults

• 15 Drives Total Configured into 2 Raid5 pairs with a Wandering Spare

• Peak Throughput Speed of the File System is 5.86 GB/sec

• Peak Aggregate Speed of the File System is 5.43 GB/sec

Longhorn Partners and Roles:

• TACC (Kelly Gaither – PI)
– Longhorn machine deployment

– User support

– Visualization and Data Analysis portal development

– Software/Tool development

• NCAR (John Clyne – CoPI)
– User support

– VAPOR Enhancements

• University of Utah (Valerio Pascucci – CoPI,
Chuck Hansen)
– User support

– Software Integration of RTRT and topological analysis

Longhorn Partners and Roles:

• Purdue University (David Ebert – CoPI)
– User support

– Integration of visual analytics software

• UC Davis (Hank Childs – Chief Software
Integration Architect)
– Directly facilitate tools being integrated into the VisIt

software suite

• SURA (Linda Akli – MSI Outreach/Broadening
Participation)

Longhorn Usage Modalities:

• Remote/Interactive Visualization
– Highest priority jobs

– Remote/Interactive capabilities facilitated through VNC

– Run on 4 hour time limit

• GPGPU jobs
– Run on a lower priority than the remote/interactive jobs

– Run on 12 hour time limit

• CPU jobs with higher memory requirements
– Run on lowest priority when neither remote/interactive nor GPGPU

jobs are waiting in the queue

– Run 12 hour time limit

Longhorn User Portal

Longhorn Queue Structure

qsub -q normal -P vis

Longhorn Usage

Longhorn Usage

Longhorn Usage

Longhorn Usage

Field of Science Since

Production

Field of Science Last 30

Days

Field of Science Last 7

Days

Sampling of Current Projects

• Computational Study of Earth and Planetary Materials

• Simulation of Quantum Systems

• Visualization and Analysis of Turbulent Flow

• A probabilistic Molecular Dynamics Optimized for the

GPU

• Visualization of Nano-Microscopy

• MURI on Biologically-Inspired Autonomous Sea

Vehicles: Towards a Mission Configurable Stealth

Underwater Batoid

• Adaptive Multiscale Simulations

Scientific Visualization

“The purpose of computing is insight not numbers.”

-- R. W. Hamming (1961)

Visualization Allows Us to “See” the Science

Application Render

Geometric Primitives Pixels Raw Data

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

Getting from Data to Insight

Data

Representation

Visualization

Primitives

Graphics

Primitives
Display

Iteration

and

Refinement

“I, We, They” Development Path

Simulation

Data

“I”

Data Exploration

“We”

Collaboration

“They”

Communication

Iteration

and

Refinement

Visualization Process Summary

• The primary goal of visualization is insight

• A picture is worth not just 1000 words,

but potentially tera- or peta-bytes of data

• Larger datasets demand not just visualization, but

advanced visualization resources and techniques

• Visualization system technology improves with

advances in GPUs and LCD technology

• Visualization software slower to adapt

Types of Input Data

• Point / Particle
– N-body simulation

• Regular grid
– Medical scan

• Curvilinear grid
– Engineering model

• Unstructured grid
– Extracted surface

 Point – scattered values with no defined structure

Types of Input Data

 Grid – regular structure, all voxels (cells)
 are the same size and shape

Types of Input Data

 Curvilinear – regularly grided mesh
 shaping function applied

Types of Input Data

 Unstructured grid – irregular mesh typically
composed of tetrahedra, prisms, pyramids,
or hexahedra.

Types of Input Data

Visualization Operations

• Surface Shading (Pseudocolor)

• Isosufacing (Contours)

• Volume Rendering

• Clipping Planes

• Streamlines

Surface Shading (Pseudocolor)

Given a scalar value at a point

on the surface and a color map,

find the corresponding color

(and opacity) and apply it to the

surface point.

Most common operation, often

combined with other ops

Isosurfaces (Contours)

Plot the surface for a

given scalar value.

Good for showing known

values of interest

Good for sampling

through a data range

Volume Rendering

Expresses how light travels through a volume

Color and opacity controlled by transfer function

Smoother transitions than isosurfaces

Clipping / Slicing Planes

Extract a plane from the data to show features

Hide part of dataset to expose features

Particle Traces (Streamlines)

Given a vector field,

extract a trace that

follows that

trajectory defined

by the vector.

Pnew = Pcurrent + VPDt

Streamlines – trace in space

Pathlines – trace in time

Visualization Resources

• Personal machines
– Most accessible, least powerful

• Projection systems
– Seamless image, high purchase and maintenance costs

• Tiled-LCD displays
– Lowest per-pixel costs, bezels divide image

• Remote visualization
– Access to high-performance system,

latency can affect user experience

Visualization Challenges

Visualization Allows Us to “See” the Science

Application Render

Geometric Primitives Pixels Raw Data

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

But what about large, distributed data?

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

Or distributed rendering?

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

Or distributed displays?

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

Or all three?

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

01001101011001

11001010010101

00101010100110

11101101011011

00110010111010

Visualization Scaling Challenges

• Moving data to the visualization machine

• Most applications built for shared memory

machines, not distributed clusters

• Image resolution limits in some software

cannot capture feature details

• Displays cannot show entire high-resolution

images at their native resolution

Visualization scales with HPC

 Large data produced by large simulations

require large visualization machines and

produce large visualization results

Terabytes of

Data

AT LEAST

Terabytes of

Vis

Gigapixel

Images

Resampling,

Application,

…

Resolution to

Capture

Feature Detail

Moving Data

• How much time do you have?

File Size 10 Gbps 54 Mbps

1 GB 1 sec 2.5 min

1 TB ~17 min ~43 hours

1 PB ~12 days ~5 years

Analyzing Data

• Visualization programs only beginning to

efficiently handle ultrascale data

– 650 GB dataset -> 3 TB memory footprint

– Allocate HPC nodes for RAM not cores

– N-1 idle processors per node!

• Stability across many distributed nodes

– Rendering clusters typically number N <= 64

– Data must be dividable onto N cores

Remember this when resampling!

Solution by Partial Sums

• Moving data – integrate vis machine into simulation

 machine. Move the machine to data!

– Ranger + Spur: shared file system and interconnect

• Analyzing data – create larger vis machines and

 develop more efficient vis apps

– Smaller memory footprint

– More stable across many distributed nodes

Until then, the simulation machine is the vis machine!

Solution by Partial Sums

• Imaging data – focus vis effort on interesting features

 parallelize image creation

– Feature detection to determine visualization targets

but can miss “unknown unknowns”

– Distribute image rendering across cluster

• Displaying data – high resolution displays

 multi-resolution image navigation

– Large displays need large spaces

– Physical navigation of display provides better insights

Old Model

(No Remote Capability)

Local

Visualization

Resource

HPC

System

Data

Archive

P
ix

e
ls

M
o

u
s
e

Display

Remote Site
Wide-Area

Network Local Site

New Model

Remote Capability

Large-Scale

Visualization

Resource

HPC

System

Data

Archive

Display

Remote Site
Wide-Area

Network Local Site

Pixels

Mouse

Parallel Visualization

– Task parallelism – passing results to 1 process for

rendering

1 2 3 4 5

1 Read file 1 Isosurface 1 Cut Plane 1

2 Read file 2 Streamlines 2 Render

3 Read file 3 Triangulate 3 Decimate 3 Glyph 3

Timesteps

P
ro

c
e
s
s
e
s

Parallel Visualization

Pipeline parallelism
 Useful when processes have access to separate resources or

when an operation requires many steps.

1 2 3 4 5

1 Read file 1 Read file 2 Read File 3

2 Isosurface 1 Isosurface 2 Isosurface 3

3 Render 1 Render 2 Render 3

Timesteps

P
ro

c
e
s
s
e
s

Parallel Visualization
Data parallelism

Data set is partitioned among the processes and all processes

execute same operations on the data.

Scales well as long as the data and operations can be decomposed.

1 2 3

1 Read

partition 1

Isosurface

partition 1

Render

partition 1

2 Read

partition 2

Isosurface

partition 2

Render

partition 2

3 Read

partition 3

Isosurface

partition 2

Render

partition 3

Timesteps

P
ro

c
e
s

s
e

s

Parallel Visualization Libraries

• Chromium – http://chromium.sourceforge.net

– Sits between application and native OpenGL

– Intercepts OpenGL calls, distribute across cluster

– Can do either sort-first or sort-last

(sort-first is simpler, sort-last can be better for large data)

– Last update 31 Aug 2006, no new GL goodies

• IceT – http://www.cs.unm.edu/~kmorel/IceT/

SAGE – http://www.evl.uic.edu/cavern/sage/

CGLX – http://vis.ucsd.edu/~cglx/

– specifically for large tiled displays

– Must use IceT / SAGE / CGLX API in code

• Mesa – http://www.mesa3d.org/

– Software rendering library

– Enables OpenGL rendering on machines without GPUs

http://chromium.sourceforge.net/
http://www.cs.unm.edu/~kmorel/IceT/
http://www.evl.uic.edu/cavern/sage/
http://vis.ucsd.edu/~cglx/
http://www.mesa3d.org/

Open-Source Parallel Vis Apps

• VisIt – https://wci.llnl.gov/codes/visit/

– Good scaling to hundreds of cores

– Integrated job launching mechanism for rendering engines

– Good documentation and user community

– GUI not as polished

• ParaView – http://www.paraview.org/

– Polished GUI, easier to navigate

– Less stable across hundreds of cores

– Official documentation must be purchased,

though rich knowledge base on web (via Google)

https://wci.llnl.gov/codes/visit/
http://www.evl.uic.edu/cavern/sage/

CUDA – coding for GPUs

• C / C++ interface plus

GPU-based extensions

• Can use both for

accelerating

visualization operations

and for general-purpose

computing (GPGPU)

• Special GPU libraries

for math, FFT, BLAS
Image: Tom Halfhill, Microprocessor Report

GPU layout

Image: Tom Halfhill, Microprocessor Report

GPU Considerations

• Parallelism – kernel should be highly SIMD

– Switching kernels is expensive!

• Job size – high workload per thread

– amortize thread initialization and memory transfer costs

• Memory footprint – task must decompose well

– local store per GPU core is low (16 KB on G80)

– card-local RAM is limited (~1GB on G8x)

– access to system RAM is slow (treat like disk access)

• GPU N-body study (in GPU Gems 3):

http://www.nvidia.com/object/io_1195170003876.html

http://www.nvidia.com/object/io_1195170003876.html

Summary

• Challenges at every stage

of visualization when

operating on large data

• Partial solutions exist,

though not integrated

• Problem sizes continue to

grow at every stage

• Vis software community

must keep pace with

hardware innovations

Thank you!

kelly@tacc.utexas.edu

