Optimization and Scalability on Ranger and Lonestar Drew Dolgert

Libraries

Performance	Math Libs	Method Libs	Applications	I/O
gprof	fftw	petsc	Amber	netcdf
tau	GotoBLAS	scalapack	NAMD	hdf5
рарі	Metis/parmetis		charm++	
	MKL 10.0		Gamess	
	Gnu Scientific Library			

Exercise Libraries

2.2 Compare libraries and hand-written code

Model of an Algorithm's Environment

Model of an Algorithm's Environment

Model

ironment

Network

mory

Memory: The Long Pole in the Tent

Use your chip – vectorize.

cat /etc/procinfo

Let the compiler roam.

Interprocedural Optimization - - ipo

But watch it.

-g -O1 -O2 -O3

Optimization Exercise Teukols

5

AIDS PYLDO

Interscience

Sciencifi

Computing

REILL

(FORTRAN)

Car

3.2

Verbening

ELECTRON SPIN RESONANCE

Poole

MOSBY

Gower

Roitt

IN A NUTSHEL

& Ascher

OREILLY

pytho

Hatch Lee Kurtz

High

. Bro

Male

MARTELLI

O REILLY"

This code runs well.

It has to run this many times.

$SU \approx cpu-hour$

time = _ + _ + _

Parallel Random Access Model of the Machine

- Multiple processors.
- Single shared memory.
- Every processor accesses memory in unit time.

LogP Model of Machine

- Latency of communication medium
- Overhead of sending and receiving a message
- Gap between two send / receive operations
- Processing units, the number of them.

Bulk Synchronous Parallel Model for Computation

Synchronize

What year?

Exercise

Focus:

- How much work to do.
- When and how much to communicate.
- Structure of communication.

4.1 Analyze a Parallel System

It is seen that for the chosen grid resolution the LES code exhibits linear scalability up to 128 processors and reasonable scalability up to 256 processors.

Efficiency

How much an N-way parallel job does

How much an N serial jobs do

Efficiency

Time for 1-way job/N

Time for N-way job

1.4 Allocation MadLib

We expect improvements in scalability with increasing problem size.

Communication versus Computation

W/N

Weak Scaling

Communication Pattern in Time

Amount sent / bandwidth Number of messages × latency

What is the time per iteration?

time = W/N + N/bw + 2 × latency

@(f(N))

It's LOG!

Section 4.2 Excel Demo of Fluent Section 4.3 Measure Strong Scaling

All-to-All Communication

How would you do it? Should you write this yourself?

Right Resources Match Computational Models to Program Models

High Performance Systems											
Name	Institution	System		Peak TFlops	Memory TBytes	Status	Load	Running Jobs	Queued Jobs	Other Jobs	
Kraken	NICS	Cray XT5		608.00	129.00	Up		24	5	3	
Ranger	TACC	Sun Constellation		579.40	123.00	Up		297	406	100	
Abe	NCSA	Dell Intel 64 Linux Cluster		89.47	9.38	Up*		194	170	136	
Lonestar	TACC	Dell PowerEdge Linux Cluster		62.16	11.60	Up		40	90	1	
Steele	Purdue	Dell Intel 64 Linux Cluster		60.00	12.40	Up		813	189	25	
Queen Bee	LONI	Dell Intel 64 Linux Cluster		50.70	5.31	Up		119	5	1	
Lincoln	NCSA	Dell/Intel PowerEdge 1950		47.50	3.00	Up		1	0	0	
Big Red	IU	IBM e1350		30.60	6.00	Up*		611	903	43	
BigBen	PSC	Cray XT3		21.50	4.04	Up		13	56	48	
TeraGrid Cluster	NCSA	IBM Itanium2 Cluster		10.23	4.47	Up		45	4	0	
Cobalt	NCSA	SGI Altix		6.55	3.00	Up		63	473	40	
Frost	NCAR	IBM BlueGene/L		5.73	0.51	Up		8	0	10	
Pople	PSC	SGI Altix 4700		5.00	1.54	Up		38	0	16	
TeraGrid Cluster	SDSC	IBM Itanium2 Cluster		3.10	1.02	Up*		42	6	0	
TeraGrid Cluster	UC/ANL	IBM Itanium2 Cluster		0.61	0.24	Up		1	0	0	
NSTG	ORNL	IBM IA-32 Cluster		0.34	0.07	Up		1	0	0	
			Total:	1580.89	314.58			2310	2307	423	

- All more complex than what we have described.
- Include RAM, flash, disk, tape, WAN.

Profiling and Presents

Speeds and Feeds at Scales

http://www.flickr.com/photos/35188692@N00/83775147/

http://www.flickr.com/photos/avdleeuw/48388892/