
5/23/2011 www.cac.cornell.edu 1

Debugging and Profiling

Nate Woody

Debugging

• Debugging is a methodical process of finding and reducing the

number of bugs, or defects, in a computer program or a piece of

electronic hardware thus making it behave as expected. Debugging

tends to be harder when various subsystems are tightly coupled, as

changes in one may cause bugs to emerge in another.

• A debugger is a computer program that is used to test and debug

other programs.

• This can be hard enough with a single local process and but get’s

many times more complicated with many remote processes

executing asynchronously. This is why Parallel Debuggers exist.

5/23/2011 www.cac.cornell.edu 2

Debugging Requirements

• In general, while debugging you may need to:

– Step through code

– Set/Run to breakpoints

– Examine variable values at different points during execution

– Examine the memory profile/usage

– Provide source-level information after a crash

• For MPI and OpenMP Code we have additional requirements

– All of the above for remote processes

– Examine MPI message status

– Step individual processes independent of the rest

5/23/2011 www.cac.cornell.edu 3

Profiling

5/23/2011 www.cac.cornell.edu 4

• Software performance analysis

– Profiling is examining where a given code is spending it’s time so that

you can understand the performance characteristics of a program or

set of functions.

– There are several levels of profiling, but we will talking about function

level profiling which provides information on the frequency and duration

of function calls.

– A profile is a statistical summary of function calls, generally you get the

number of times each function was called and the total amount of time

spend in the function.

– The goal of profiling is to identify “hot spots”, which are functions that

occupy an inordinate amount of the total time of a program, which

means that optimization of these functions will provide the greatest

benefit.

Profiling

• Flat profile – total time and number of calls of function

• Call graph – See how a function was called

5/23/2011 www.cac.cornell.edu 5

% cumulative self self total

time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime

16.67 0.04 0.01 8 1.25 1.25 memccpy

16.67 0.05 0.01 7 1.43 1.43 write

index % time self children called name

[1] 100. 0 0.00 0.05 1/1 start [1]

 0.00 0.05 1/1 main [2]

 0.00 0.00 1/2 on_exit [28]

 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]

 0.00 0.05 1/1 report [3]

Tools

• Debugging requires a debugger, of which many are available.

– Your development environment may well have a built-in debugger

available. Eclipse is a good a good example, which provides a nice

interface to a debugger.

• GDB – The GNU Project Debugger

– Universally available debugger that can debug C, C++, and Fortran

code (if you can compile it with GCC, you should be able to debug it

with gdb).

– GDB has a command line interface to walking through code that takes a

little getting used to.

– Your code must be compiled in debug mode before you can use GDB,

you can’t just start debugging a binary.

5/23/2011 www.cac.cornell.edu 6

Debugging with GDB

• Step 1 – build with debugging symbols.

– $ g++ -ggdb –Wall –o test main.cc

• Step 2 – launch the application inside the debugger

– $ gdb test

• Step 3 – Run the application

– $ (gdb) run

• Step 4 – Examine the backtrace

– $(gdb) backtrace

• Step 5 – Examine the parameter values

– $ (gdb) x 0x7fffa408c3d4

5/23/2011 www.cac.cornell.edu 7

Breakpoints and stepping

• Previously, we just used the debugger to examine what happened

after the program exploded. It may be more useful to examine the

program before it blows up, which can be done by setting

breakpoints and stepping.

• A breakpoint halts execution of the program at a specific source line.

– (gdb) break LinkedList<int>::remove

• This can be made conditional by using the “condition” statement, so

that the breakpoint only occurs when a specific condition is meant.

– (gdb) condition 1 item_to_remove==1

• Re start using run and execution will be halted at the breakpoint.

Execute one line of code by using step.

– (gdb) step

5/23/2011 www.cac.cornell.edu 8

GDB commands summary

• run – execute the program from beginning.

• backtrace – produce the backtrace from the last fault

• break <line number> or break <function-name> - break at the line

number or at the use of the funciton

• delete <breakpoint number> - remove a breakpoint

• step – step to next line of code (step into function if possible)

• next – step to next line of code (do not step into function)

• list – print source list (list <function> to print a specific function)

• print <variable name> - print the value stored by the variable

• continue – run until next break point

• quit – quit

• help – get help on any command

5/23/2011 www.cac.cornell.edu 9

Gprof for profiling

• Gprof is used for monitoring the performance of a FUNCTIONAL

program to help guide optimization efforts.

– It’s not a debugger, make sure you’re program is working the way you

want before you think about profiling.

– Optimization often results in less readable, modular, and maintainable

code, the best optimization strategy may be to not optimize.

• In order to get profiling output, compile with the –pg option.

– Generally, you’ll want to use all the other compile flags that you are

using, otherwise you may be profiling code that performs differently than

it does. However, in most cases, this is not a huge issue. Try it both

ways if you are concerned.

5/23/2011 www.cac.cornell.edu 10

A Gprof session

• Compile with profiling on

– $ gcc –pg –o prof_test prof_test.c

• Run the binary normally, which will generate a gmon.out file

– $./prof_test

• Run gprof on the binary to generate the results

– $ gprof prof_test >> profile_results.txt

• Examine the results

– vi profile_results.txt

5/23/2011 www.cac.cornell.edu 11

Profiling Caveats

• Basically, you’re looking for functions that occupy a large amount of

system time and/or are called a inordinate amount of times.

– Functions that takes lots of time are candidates for optimization,

particularly if they are called heavily. This will give you the best bang for

the buck.

– Functions that are called many times but don’t occupy much system

time are probably losers for optimization. You won’t see much benefit

from optimizing these even if you do!

• You should be careful about I/O!

– I/O wait is not reported in profiling numbers, so examine timing

information in I/O heavy functions carefully.

• Be cautious in interpretation of absolute time

• Don’t shortchange the sample data when generating profile data

5/23/2011 www.cac.cornell.edu 12

Results

• Only 5 functions take up any appreciative time in this report, so we

would only start with these. A ton of open calls are made (30x more

than anything else, I wonder why). 8 memcopy’s take up 16% of the

total execution time.

5/23/2011 www.cac.cornell.edu 13

GDB/Gprof Lab

• The goal of this lab is to make sure everyone can successfully use

and understand GDB and Gprof. Three source files are provided for

practice and a Makefile is provided for help (try not to use it).

– ~train200/profile_debug.tar.gz

• Example1.c – a simple profiling example. Use gcc to build a binary with profiling

enabled (a Makefile is provided if you have trouble). Run gprof and examine the flat

and call graph. Try and figure out the structure of the program from the call graph

and verify by looking at the source. Alter the program to work without the increment

function and verify the results using the call graph.

• Linpack.c – compile using the Makefile (make profile) to get an example2 binary.

Run gprof on the resultant binary, what function is the target for optimization?

• Example3.c – a buggy mangled printer. Use the debugger to identify where the

problem is and fix it.

• Example4.c – a buggy echo machine. This is actually a little tougher than you might

expect as you get buried in c library functions and need to work your way back out to

step.
5/23/2011 www.cac.cornell.edu 14

Instrumenting code for logging and

Debugging

5/23/2011 www.cac.cornell.edu 15

Debugging and Logging

• GDB is a debugger that you would use when you have identified a

problem in your code and you’re trying to isolate and identify the

source of the problem.

• Printf() debugging is the debugging style where you add all sorts of

printf(), cout, print, System.out.println(), etc to dump information to

stdout or stderr to track what the problem is.

– Learned folks often disapprove of such nonsense and suggest that

practical use of a debugger is vastly more efficient.

– Practical folks will admit to it’s utility and point to the fact that it allows

continuous monitoring of the code outside of a debugger

– Both are right, and with some simple setup, you can add

debugging/logging statements to your code that will be useful,

informative, and unintrisive.

5/23/2011 www.cac.cornell.edu 16

Printf Debugging

• First, let’s take a look at what the much feared printf debugging

looks like.

5/23/2011 www.cac.cornell.edu 17

int main (int argc, char** argv) {

 printf(“Starting main…”);

 int iterations = 5;

 int val = 0, val2=0;

 printf(“Initialized val to %d and val2 to %d”, val, val2);

 while (iterations --) {

 val = sometime();

 print(“Sometime() returned %d\n”, val);

 val2 = moretime();

 printf(“moretime() returned %d\n”, val);

 }

 printf(“Exiting main, iterations ==%s\d”, iterations);

Printf Debugging

• With this example, we have pretty much covered the code with 5

printf statements. This results in several problems that can occur.

– You have drastically increased the number of lines of code, and it’s

quite easy to make an error in one of these new lines (mess up a format

string and you’re debugging breaks your program). The number of lines

required to get debugging level information is very high.

– There is no easy way to remove these lines from your code without

potentially breaking something. If you insert these lines in the middle of

a debugging session, if they aren’t manually removed this function will

forever emit all of this stuff on stdout. I hope no meaningful data goes

to stdout anywhere.

– Writing to stdout slows down your program significantly, having a printf

in the middle of a tight for loop will have a big impact on performance.

5/23/2011 www.cac.cornell.edu 18

Advantages of Printf Debugging

• There are some cases where printf-style debugging is useful.

– Long running applications where erronous results are produced. Using

a debugger is most useful when the identifying crashes or once the

function/class/etc that has a bug is identified. Printf may help you

identify the function or class where deviations occur.

– It allows you to examine optimized code instead of code with debugging

symbols added. It also let’s you get output while running at full scale for

parallel applications. This is occasionally useful.

– Running multi-threaded or on remote machines. Connecting a

debugger to a remote process can be difficult and tracking forks etc is

non-trivial.

– Help identify transient and/or timing related bugs.

5/23/2011 www.cac.cornell.edu 19

What to do

• Printf debugging certainly has advantages, but it also creates

ugliness in your code as well potentially the source of problems

unrelated to the one you’re trying to solve!

• These can be mitigated with a few easy steps

– Don’t ever use stdout, use stderr (unbuffered, seperation, etc)

– Don’t call printf directly, use a macro/function/class that handles the

output safely.

– Use “levels”, which are the criticality of the problem and range from

debug (the lines we showed earlier) to warning (possible erronous

values). You can then control when and where these various levels are

printed.

5/23/2011 www.cac.cornell.edu 20

Logging Libraries

• What we’re actually talking about is “logging”.

– Logging is the process of computer systems logging state changes and

informational content to a central location where they can be recorded

and examined later.

– Here’s a chunk of an up2date log (stashed in /var/log/up2date)

• There are libraries that we can use to get safe, readable logging

added to your code very easily.

5/23/2011 www.cac.cornell.edu 21

[Mon May 18 09:53:49 2009] up2date logging into up2date server

[Mon May 18 09:53:50 2009] up2date succesfully retrieved authentication token

[Mon May 18 09:55:20 2009] up2date Updating pacakge profile

[Mon May 18 09:57:25 2009] up2date Updating package profile

Log4Blah

• Log4J is an Apache foundation project that provides logging utility

for Java. The interface to this has now been copied to many

different languages.

– Log4Net – is for .NET and works with C++, C#, etc.

– Log4CXX – is for C++ and works for most platforms.

– Log4c – is for C

– Log4py and log4p– is for python

– Log4Ruby – you get the idea, yes?

• Other logging libraries exist, Log4J is the only one that crosses so

many different languages, which makes it a little easier to use.

• As far as I know if you’re using fortran, you’ll need to implement the

logging yourself (if someone knows differently, please let me know).

5/23/2011 www.cac.cornell.edu 22

Log4J Features

• Automatic formatting of output with appending timestamps and who

emitted the log.

• A library of “Appenders” which are objects that control how and

where a log line is written.

– RollingLogAppender – logs to a file which rolls when it reaches a certain

size or date.

– SocketAppender – logs over a socket to a log server

– DatabaseAppenders – log information to a database

• It is a best-effort fail-stop system.

– This means that it will not emit unexpected expectations causing your

application to crash but will try really hard to actually log your info.

• It provides easy control of logging level at runtime

5/23/2011 www.cac.cornell.edu 23

What does it look like

• Replacing printf lines with log lines doesn’t significantly change the

look of the program, some extra boilerplate and a logger object must

be grabbed.

5/23/2011 www.cac.cornell.edu 24

int main (int argc, char** argv) {

 log4c_init();

 mycat = log4c_category_get(“sillyapp.main");

 int iterations = 5;

 log4c_category_log(mycat, LOG4C_PRIORITY_DEBUG,"Debugging app 1

- loop %d", iterations);

 int val = 0, val2=0;

 log4c_category_log(mycat, LOG4C_PRIORITY_ERROR, “Some error”

 printf(“Initialized val to %d and val2 to %d”, val, val2);

 …

Configuration

5/23/2011 www.cac.cornell.edu 25

Results

• Log messages are then shunted to the appropriate location and

formatted prior to putting them in the log.

• We can fancy things up and add headers and footers, as well as all

sorts of other fanciness (log different levels to different

files/appenders).

• There are many programs out there designed for “log file analysis”,

aka handling large nicely formatted log files.

5/23/2011 www.cac.cornell.edu 26

[Header]

2009-05-13 15:21:14,315 [11] WARN Logger.Program Pretty sure I'm getting ready to die!

2009-05-13 15:21:14,331 [11] ERROR Logger.Program uh-oh, no I wasn't!

2009-05-13 15:21:14,331 [11] FATAL Logger.Program blech. Out

[Footer]

Conclusion

• Ad hoc printf debugging probably causes as many problems as it

solves

• Nonetheless, it can be highly useful in some cases.

• A few easy steps can make this style of debugging much less

problematic and the early inclusion of a logging library will save you

a lot of time down the line.

• The log4J line of loggers are a nice suite of tools that serve many

different languages with a common interface and actions.

5/23/2011 www.cac.cornell.edu 27

DDT

Distributed Debugging Tool

Parallel Debugging on Ranger

5/23/2011 www.cac.cornell.edu 28

DDT

• DDT – Distributed Debugging Tool (www.allinea.com)

• A graphical debugger for scalar, multi-threaded and parallel

applications for C, C++ and Fortran

• DDT’s provides graphical process grouping functionality. DDT

makes it really easy to assign arbitrary processes into groups which

can be acted on separatly.

• Provides memory debugging features as well, things like checking

pointers, array bounds, etc.

• Provides functionality to interact reasonable with STL components

(ie you can see what a map actually contains) and create views for

your own objects.

• Allows viewing of MPI message queues for running processes

5/23/2011 www.cac.cornell.edu 29

http://www.allinea.com/

DDT Demo

• By far the best way to show what DDT can do is to start it up and

look at it and show some things with it. Once we do this, we’ll have

everybody log in and make sure they can DDT started.

• We’ll talk about:

– Creating and altering groups

– Stepping groups and processes

– Show Cross-group comparison

– Show Memory Usage/Profiling

– Show MPI Queues

– Show multi-dimensional array viewer

5/23/2011 www.cac.cornell.edu 30

Starting DDT

5/23/2011 www.cac.cornell.edu 31

• Login to ranger with an X tunnel

 $ ssh –X ranger.tacc.utexas.edu

• We need a binary compiled with debugging flags. If you don’t have

a binary already on ranger, you can get one from the train00

directory

 login3% mkdir ~/ddt

 login3$ cp ~train00/ddt_debug/debug_code.f .

• Ensure you have your preferred compiler loaded

 login3% module list

 login3% module unload mvapich

 login3% module swap pgi intel

 login3% module load mvapich

Starting DDT

• Compile with debugging flags

 login3% cd ~/ddt

 login3% mpif90 –g –O0 debug_code.f –o ddt_app

• Load the DDT module

 login3% module list

 login3% module load ddt

 login3% module list

 login3% echo $DDTROOT

• Start DDT

 login3% ddt ddt_app

5/23/2011 www.cac.cornell.edu 32

Starting DDT

5/23/2011 www.cac.cornell.edu 33

Click!

Running a job

5/23/2011 www.cac.cornell.edu 34

Add any arguments

Ranger default

Sets number

of nodes
Click when ready

to submit job

Account Name

5/23/2011 www.cac.cornell.edu 35

Provide

allocation id

(qsub -A value)

then click OK

Waiting for job to start

5/23/2011 www.cac.cornell.edu 36

Job starting, connecting to all remote processes

5/23/2011 www.cac.cornell.edu 37

Session started!

5/23/2011 www.cac.cornell.edu 38

Root process

is selected

Source

locations of

processes

STDOUT Watched Values, Expressions

Local

variables

DDT

• At this point, DDT should be up and running for you and you only

need to load the DDT module and any configuration changes you

made (ie Account name) will be saved for the next time you use it.

• It should feel very much like an IDE debugger, just with the added

capabilities of viewing remote processes and MPI information.

• It wasn’t shown, but this can be used just as well to debug OpenMP

programs, though you may need to be careful when stepping

through non-threaded sections. Check out the User Guide for any

questions you have or request help through the TeraGrid help desk.

• UserGuide: http://www.allinea.com/downloads/userguide.pdf

 Or press F1 while running DDT to call up the help.

5/23/2011 www.cac.cornell.edu 39

http://www.allinea.com/downloads/userguide.pdf

DDT Lab

• The DDT Lab is a free-form opportunity to get DDT running.

• Open an SSH session with an X-tunnel to ranger.tacc.utexas.edu

and get the example code:

login3$ cp ~train00/ddt_debug/debug_code.f .

• Compile

login3% mpif90 –g –O0 debug_code.f –o ddt_app

• Load the DDT Module and run ddt

login3% module load ddt

login3% ddt ddt_app

5/23/2011 www.cac.cornell.edu 40

