
Steve Lantz
Senior Research Associate

Cornell CAC

Workshop: Introduction to Parallel Computing on Ranger, May 23, 2011
Based on materials developed by by Bill Barth at TACC

Programming with MPI:
Advanced Topics

2

Goals

• To gain an awareness of specialized features in MPI that you may
want to use right away in writing parallel applications

• To create a little mental catalog of MPI’s more advanced capabilities
for future reference

As we go through each section, we’ll want to consider:
• Why was this set of routines included? What might they be good for?
• Can we think of an example where they would be useful?

3

Introduction and Outline

1. Advanced point-to-point communication
2. Persistent communication

- LAB -
3. Communicators and groups
4. Collective communication with non-contiguous data
5. Derived datatypes
6. Parallel I/O (MPI-2)
7. Status of MPI-2

4

1. Advanced Point-to-Point
Communication

5

Types of Parallel Overhead in Point-to-Point Calls

• System overhead – time spent in sending packets across the
network, copying to internal MPI buffers, etc.

• Synchronization overhead – time spent in waiting for other
processes to participate in a communication event

• Memory overhead – buffers set aside for handling communication,
whether by the user or internally to MPI

6

Standard Send, Receive

Standard-Mode Blocking Calls:
MPI_Send, MPI_Recv

• MPI_Send returns only when
the buffer is safe to reuse:
– the small message has

been copied elsewhere, or
– the large message has

actually been transferred;
– the small/large threshold is

implementation dependent
• Rule of thumb: a send only

completes if a matching
receive is posted/executed

“eager”

“rendezvous”

7

Synchronous and Buffered Modes

Synchronous Mode: MPI_Ssend
• Transfer is not initiated until

matching receive is posted
• Non-local: handshake needed
• Returns after message is sent
Buffered Mode: MPI_Bsend
• Completes as soon as the

message is copied into the
user-provided buffer

• Buffer must be provided using
MPI_Buffer_attach

• One buffer per process

8

Ready Mode and Deadlock

Ready Mode: MPI_Rsend
• Initiates transfer immediately
• Assumes that a matching

receive has already been
posted

• Error if receiver isn’t ready
Deadlock
• All tasks are waiting for events

that yet haven’t been initiated
• Can be avoided by reordering

calls, by using non-blocking or
buffered (e.g., “eager”) calls, or
with MPI_Sendrecv

*No deadlock for
small messages

9

• Synchronous mode is portable and “safe”
– does not depend on order (ready mode) or buffer space (buffered mode)
– incurs substantial overhead

• Ready mode has least total overhead, but how can error be avoided?
– sometimes the logic of the code implies the receiver must be ready

• Buffered mode decouples sender and receiver
– sender doesn’t have to sync; receiver doesn’t have to be ready
– system and memory overheads are incurred by copying to the buffer
– sender can control size of message buffers and total amount of space

• Standard mode tries to strike a balance
– small messages are buffered on receiver’s side (avoiding sync overhead)
– large messages are sent synchronously (avoiding big buffer space)

Discussion of Send Modes

10

• MPI_Sendrecv (blocking)
– send message A from one buffer; receive message B in another buffer
– destination of A, source of B can be same or different

• MPI_Sendrecv_replace (blocking)
– send message A from one buffer; receive message B in SAME buffer
– again, destination of A, source of B can be same or different
– system takes care of the extra internal buffering

• Illustration 1: data swap between processors
– destination and source are identical

• Illustration 2: chain of processors
– send result to myrank+1, receive next input from myrank-1

MPI_Sendrecv and MPI_Sendrecv_replace

11

Non-Blocking Calls

• Calls return immediately
• System handles buffering
• Not “safe” to access message

contents until action is known
to be completed

• With MPI_Isend, message
buffer is reusable right away
if tag or receiver is different;
otherwise, check status

• With MPI_Irecv, user must
always check for data; only
small messages are buffered useful work

may be done

12

for (i=0;i<M;i++) MPI_Irecv(<declare receive buffers>);
for (i=0;i<N;i++) MPI_Isend(<mark data for sending>);

/* Do local operations */
MPI_Waitall(<make sure all receives finish>)

/* Operate on received data */
MPI_Waitall(<clear request handles for all sends>)

Use of Non-Blocking Communication

• Non-blocking calls permit overlap of computation and communication
• All send modes are available: MPI_Irsend, MPI_Ibsend, MPI_Issend
• Non-blocking calls must normally be resolved through a second call

– main options: MPI_Wait, MPI_Test, MPI_Request_free
– variants like MPI_Waitany help to resolve calls in arbitrary order
– reason for doing this: avoid running out of request handles

• Outline for typical code:

13

Sandwich Shop Analogy

The request handle is like your order number.
• MPI_Test - You go to the counter ask the guy if your

order number is ready. (If it isn’t, then you can go back
to your table and talk some more with your friends.)

• MPI_Wait - You hang around the counter until your
order number is definitely ready. (Maybe your friends
won’t talk to you until you bring them some food!)

• MPI_Request_free - You turn in your order number
without learning the status of your food. (Perhaps
you’ve canceled your order; or perhaps the order is
obviously ready, and you already know what’s in it.)

The number can be reused after you turn in your ticket.

14

• MPI_Wait halts progress until a specific non-blocking request (send
or receive) is satisfied; the related message buffer is then safe to use
– MPI_Waitall does the same thing for a whole array of requests
– MPI_Waitany waits for any one request from an array
– MPI_Waitsome waits for one or more requests from an array

• MPI_Test immediately returns the status (no waiting!) of a specific
non-blocking operation, again identified by a request handle
– returns flag = true only if the operation is complete
– allows alternative instructions to be carried out if operation isn’t complete
– has the same variants: MPI_Testall, MPI_Testany, MPI_Testsome

MPI_Testany(int count, MPI_Request *array_of_reqs,
int *index, int *flag, MPI_Status *status);

MPI_Wait and MPI_Test

15

• MPI_ANY_SOURCE, MPI_ANY_TAG are “wildcards” that may be
used by receives (blocking and non-blocking) in situations where the
source or tag of a message does not need to be known in advance
– the status argument returns source, tag, and error status
– a separate call to MPI_Get_count determines the size of the message
– but… what if you need to know a message’s size before receiving it?

• MPI_Iprobe returns the properties of any message that has arrived
without receiving it into a buffer (maybe you need to do a big malloc!)

• MPI_Probe blocks until such a message arrives (no flag)

Other Ways to Gain Flexibility in Communication

MPI_Iprobe(int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);

16

2. Persistent Communication

17

• Motivation: we’d like to save the argument list of an MPI call to
reduce overhead for subsequent calls with the same arguments

• INIT takes the original argument list of a send or receive call and
creates a persistent communication request from it
– MPI_Send_init (for nonblocking send)
– MPI_Bsend_init (for buffered send – can do Rsend or Ssend as well)
– MPI_Recv_init (for nonblocking receive)

• START starts an operation based on the communication request
– MPI_Start
– MPI_Startall

• REQUEST_FREE frees the persistent communication request
– MPI_Request_free

How Persistent Communication Works

18

MPI_Recv_init(buf1,count,type,src,tag,comm,&req[0]);
MPI_Send_init(buf2,count,type,src,tag,comm,&req[1]);

for (i=1; i < BIGNUM; i++)
{

MPI_Start(&req[0]);
MPI_Start(&req[1]);
MPI_Waitall(2,req,status);
do_work(buf1,buf2);

}

MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

Typical Situation Where Persistence Might Be Used

19

Improvement in Wallclock Time (IBM SP2)
Persistent vs. Conventional Communication

size, bytes mode improvement mode improvement
8 async 19 % sync 15 %
4096 async 11 % sync 4.7 %
8192 async 5.9 % sync 2.9 %
800,000 - - sync 0 %
8,000,000 - - sync 0 %

Performance Benefits from Using Persistence

• Takeaway: it’s most effective when applied to lots of small messages

20

3. Communicators and Groups

21

MPI_COMM_WORLD
0

1 3

2 4

COMM1

COMM2

0

0 1

1 2

Communicators and Groups: Definitions

• All MPI communication is
relative to a communicator
which contains a context
and a group. The group is
just a set of processes.

• Processes may have
different ranks in different
communicators.

MPI_COMM_WORLD

22

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
myrow = (int)(rank/ncol); //yields 0, 1,... nrows-1
MPI_Comm_split(MPI_COMM_WORLD,myrow,rank,row_comm);

Subdividing Communicators: Approach #1

• To subdivide a communicator into multiple non-overlapping
communicators, one approach is to use MPI_Comm_split

23

Arguments to MPI_Comm_split

1. Communicator to split
2. Key – all processes with the same key go in the same communicator
3. Value to determine ordering in the result communicator (optional)
4. Result communicator

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
myrow = (int)(rank/ncol); //yields 0, 1,... rows-1
MPI_Comm_split(MPI_COMM_WORLD,myrow,rank,row_comm);

24

Subdividing Communicators: Approach #2

• The same goal can be accomplished using groups
• MPI_Comm_group – extract the group defined by a communicator
• MPI_Group_incl – make a new group from selected members of

the existing group (e.g., members in the same row of a 2D layout)
• MPI_Comm_create – form a communicator based on this group

25

MPI_Group base_grp,grp; MPI_Comm row_comm,temp_comm;
int row_list[NCOL], irow, myrank_in_world;

MPI_Comm_group(MPI_COMM_WORLD,&base_grp); //get base
MPI_Comm_rank(MPI_COMM_WORLD,&myrank_in_world);

irow = (myrank_in_world/NCOL);
for (i=0; i <NCOL; i++) row_list[i] = i;
for (i=0; i <NROW; i++){

MPI_Group_incl(base_grp,NCOL,row_list,&grp);
MPI_Comm_create(MPI_COMM_WORLD,grp,&temp_comm);
if (irow == i) *row_comm=temp_comm; //toss others
for (j=0;j<NCOL;j++) row_list[j] += NCOL;

}

Code for Approach #2

26

Communicators and Groups: Summary

• In Approach #1, we used MPI_Comm_split to split one
communicator into multiple non-overlapping communicators.

• This approach is relatively compact and is suitable for regular
decompositions.

• In Approach #2, we broke the communicator into (sub)groups and
made these into new communicators to suit our needs.

• We did this using MPI_Comm_group, MPI_Group_incl, and
MPI_Comm_create.

• This approach is quite flexible and is more generally applicable.
• Many other group functions are available: union, intersection,

difference, include, exclude, range-include, range-exclude.

27

4. Collective Communication
with Non-Contiguous Data

28

Root

task or
process

array or
variable

broadcast

scatter

gather

allgather

p0 A

p1 A

p2 A

p3 A

p0 A

p1 B

p2 C

p3 D

p0 A B C D

p1

p2

p3

p0 A B C D

p1 A B C D

p2 A B C D

p3 A B C D

p0 A

p1

p2

p3

p0 A B C D

p1

p2

p3

p0 A

p1 B

p2 C

p3 D

p0 A

p1 B

p2 C

p3 D

Review: Scatter and Gather

29

Introducing Scatterv, Gatherv

• MPI_{Scatter,Gather,Allgather}v
• What does v stand for?

– varying size and relative location of messages
• Advantages

– more flexibility
– less need to copy data into temporary buffers
– more compact

• Disadvantage
– harder to program

30

Scatter vs. Scatterv

CALL mpi_scatterv (SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE,
RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERR)

• SENDCOUNTS(J) is the number of items of type SENDTYPE to send from
process ROOT to process J. Defined on ROOT.

• DISPLS(J) is the displacement from SENDBUF to the beginning of the J-th
message, in units of SENDTYPE. Defined on ROOT.

31

MPI_Comm_size(comm,&ntids);
sizes = (int*)malloc(ntids*sizeof(int));
MPI_Allgather(&n,1,MPI_INT,sizes,1,MPI_INT,comm);
offsets = (int*)malloc(ntids*sizeof(int));
s=0;
for (i=0; i<ntids; i++)

{offsets[i]=s; s+=sizes[i];}
N = s;
result_array = (int*)malloc(N*sizeof(int));
MPI_Allgatherv

((void*)local_array,n,MPI_INT,(void*)result_array,
sizes,offsets,MPI_INT,comm);

free(sizes); free(offsets);

Allgatherv Example

32

5. Derived Datatypes

33

Derived Datatypes: Motivation

• MPI basic datatypes are predefined for contiguous data of single type
• What if an application needs to communicate data of mixed type or in

non-contiguous locations?
– solutions that involve making multiple MPI calls, copying data into a

buffer and packing, etc., are slow, clumsy and wasteful of memory
– better to create/derive datatypes for these special needs from the

existing datatypes
– called “derived” because you build them up from more fundamental types

• Here are several of their advantages :
1. They can be created recursively
2. They can be created conditionally, at runtime
3. Packing and unpacking are done automatically

34

General Datatypes

• Contiguous: Vector with “stride” of one
• Vector: Fixed-size blocks separated by constant stride
• Hvector: Like vector, but with stride in bytes
• Indexed: Arrays of block sizes and indices (like scatterv/gatherv)
• Hindexed: Indexed, with indices in bytes
• Struct: General mixed types (for C structs etc.)

35

blklen=2

stride=5 (in elements)

Vector
(strided)

“Struct”

v_blk_len[0]=3

Indexedcount=3

blocks

v_blk_len[1]=2 v_blk_len[2]=1

v_disp[0]=0 v_disp[1]=5 (in elements) v_disp[2]=12

count=3

elements

type[0] type[1] type[2]

v_disp[0] v_disp[1] (in bytes) v_disp[2]

count=3

blocks

v_blk_len[0]=2 v_blk_len[1]=3 v_blk_len[2]=4

Picturing Some Derived Datatypes

36

mpi_type_vector(count,blocklen,stride,oldtype,vtype,ierr)

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Array A

call MPI_Type_vector(ncols,1,nrows,MPI_DOUBLE_PRECISION,&
vtype,ierr)

call MPI_Type_commit(vtype,ierr)
call MPI_Send(A(nrows,1),1,vtype...)

ncols = 4
nrows = 5

Using MPI’s Vector Type

• Function MPI_TYPE_VECTOR allows creating non-contiguous vectors
with constant stride. Where might one use it?

37

6. Parallel I/O (MPI-2)

38

Parallel I/O with MPI-IO

• Why parallel I/O?
– I/O was lacking from the MPI-1 specification
– Due to need, it was defined independently, then subsumed into MPI-2

• What is parallel I/O? It occurs when:
– multiple MPI tasks can read or write simultaneously,
– from or to a single file,
– in a parallel file system,
– through the MPI-IO interface.

• A parallel file system works by:
– appearing as a normal Unix file system, while
– employing multiple I/O servers (usually) for high sustained throughput.

39

MPI-IO Advantages

• Two common alternatives to parallel MPI-IO are:
1. Rank 0 accesses a file; it gathers/scatters file data from/to other ranks.
2. Each rank opens a separate file and does I/O to it independently.

• Alternative I/O schemes are simple enough to code, but have either
1. Poor scalability (e.g., the single task is a bottleneck) or
2. ile management challenges (e.g., files must be collected from local disk).

• MPI-IO provides
– mechanisms for performing synchronization,
– syntax for data movement, and
– means for defining noncontiguous data layout in a file (MPI datatypes).

40

Noncontiguous Accesses

• Parallel applications commonly need to write distributed arrays to disk
– Better to do this to a single file, instead of multiple

• A big advantage of MPI I/O over Unix I/O is the ability to specify
noncontiguous accesses in both a file and a memory buffer.
– Read or write such a file in parallel by using derived datatypes within a

single MPI function call
– Let the MPI implementation to optimize the access

• Collective I/O combined with noncontiguous accesses generally
yields the highest performance

• HPC parallel I/O requires some extra work, but it
– potentially provides high throughput and
– offers a single (unified) file for viz and pre/post processing

41

FILE

P0
P1
P2

P(n-1)

P# is a single processor with rank #.

…

memory
memory
memory

memory

Simple MPI-IO

Each MPI task reads/writes a single block:

42

File Pointers and Offsets

• In simple MPI-IO, each MPI process reads or writes a single block.
• I/O functions must be preceded by a call to MPI_File_open, which

defines both an individual file pointer for the process, and a shared
file pointer for the communicator.

• We have three means of positioning where the read or write takes
place for each process:
1. Use individual file pointers, call MPI_File_seek/read
2. Calculate byte offsets, call MPI_File_read_at
3. Access a shared file pointer, call MPI_File_seek/read_shared

• Techniques 1 and 2 are naturally associated with C and Fortran,
respectively. In any case, the goal is roughly indicated by the
previous figure.

43

MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);

Reading by Using Individual File Pointers – C Code

44

include 'mpif.h'
integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

nints = FILESIZE/(nprocs*INTSIZE)
offset = rank * nints * INTSIZE

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY, &
MPI_INFO_NULL, fh, ierr)

call MPI_FILE_READ_AT(fh, offset, buf, nints,
MPI_INTEGER, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)

Reading by Using Explicit Offsets – F90 Code

45

Operations with Pointers, Offsets, Shared Pointers

• MPI_File_open flags:
– MPI_MODE_RDONLY (read only)
– MPI_MODE_WRONLY (write only)
– MPI_MODE_RDWR (read and write)
– MPI_MODE_CREATE (create file if it doesn’t exist)
– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran, to combine multiple flags

• To write into a file, use MPI_File_write or MPI_File_write_at, or…
• The following operations reference the implicitly-maintained shared

pointer defined by MPI_File_open
– MPI_File_read_shared
– MPI_File_write_shared
– MPI_File_seek_shared

46

File Views

• A view is a triplet of arguments (displacement, etype, filetype) that is
passed to MPI_File_set_view.

– displacement = number of bytes to be skipped from the start of the file
– etype = unit of data access (can be any basic or derived datatype)
– filetype = specifies layout of etypes within file

• Note that etype is considered to be the elementary type, but since it
can be a derived datatype, there’s really nothing elementary about it.

• In the file view depicted on the next slide, etype is double precision,
filetype is a vector type, and displacement is used to stagger the
starting positions by MPI rank.

47

etype = MPI_DOUBLE_PRECISION elementary datatype

filetype = myPattern derived datatype, sees every 4th DP

displacement

VIEW: each task repeats myPattern
with different displacements

head of file

… task0
task1
task2
task3

…
…
…

file

Example #1: File Views for a Four-Task Job

…

48

File View Examples

• In Example 1, we write contiguous data into a contiguous block
defined by a file view.
– We give each process a different file view so that together, the processes

lay out a series of blocks in the file, one block per process.

• In Example 2, we write contiguous data into two separate blocks
defined by a different file view.
– Each block is a contiguous type in memory, but the pair of blocks is a

vector type in the file view.
– We again use displacements to lay out a series of blocks in the file, one

block per process, in a repeating fashion.

49

File

P0 P1 P2 P3

Example #1: File Views for a Four-Task Job

• 1 block from each task, written in task order

MPI_File_set_view assigns regions of the file to separate processes

50

#define N 100
MPI_Datatype arraytype;
MPI_Offset disp;

disp = rank*sizeof(int)*N; etype = MPI_INT;
MPI_Type_contiguous(N, MPI_INT, &arraytype);
MPI_Type_commit(&arraytype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR,
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, arraytype,
"native", MPI_INFO_NULL);

MPI_File_write(fh, buf, N, etype, MPI_STATUS_IGNORE);

Code for Example #1

51

File

P0 P1 P2 P3NW NW

Example #2: File Views for a Four-Task Job

• 2 blocks from each task, written in round-robin fashion to a file

MPI_File_set_view assigns regions of the file to separate processes

52

Code for Example #2
int buf[NW*2];

MPI_File_open(MPI_COMM_WORLD, "/data2",
MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

/* want to see 2 blocks of NW ints, NW*npes apart */
MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);
MPI_Type_commit(&fileblk);
disp = (MPI_Offset)rank*NW*sizeof(int);
MPI_File_set_view(fh, disp, MPI_INT, fileblk,

"native", MPI_INFO_NULL);

/* processor writes 2 'ablk', each with NW ints */
MPI_Type_contiguous(NW, MPI_INT, &ablk);
MPI_Type_commit(&ablk);
MPI_File_write(fh, (void *)buf, 2, ablk, &status);

53

Small individual
requests

Large collective
access

Collective I/O in MPI

• A critical optimization in parallel I/O
• Allows communication of “big picture” to file system
• Framework for 2-phase I/O, in which communication precedes I/O
• Preliminary communication can use MPI machinery to aggregate data
• Basic idea: build large blocks, so that reads/writes in I/O system will

be more efficient

54

MPI Routines for Collective I/O

• Typical routine names:
– MPI_File_read_all
– MPI_File_read_at_all, etc.

• The _all indicates that all processes in the group specified by the
communicator passed to MPI_File_open will call this function

• Each process provides nothing beyond its own access information,
including its individual pointer
– The argument list is therefore the same as for the non-collective functions

• Collective I/O operations work with shared pointers, too
– The general rule is to replace _shared with _ordered in the routine name
– Thus, the collective equivalent of MPI_File_read_shared is

MPI_File_read_ordered

55

Advantages of Collective I/O

• By calling the collective I/O functions, the user allows an
implementation to optimize the request based on the combined
requests of all processes

• The implementation can merge the requests of different processes
and service the merged request efficiently

• Particularly effective when the accesses of different processes are
noncontiguous and interleaved

56

Original memory layout on 4 processors

then writes to File layout

MPI collects in temporary buffers

Collective Choreography

57

Asynchronous Operations

Asynchronous operations give the system even more opportunities to
optimize I/O.

For each noncollective I/O routine, there is an nonblocking variant.
• MPI_File_iwrite and MPI_File_iread, e.g., are nonblocking calls.
• The general naming convention is to replace “read” with “iread”, or

“write” with “iwrite”.
• These nonblocking routines are analogous to the nonblocking sends

and receives in MPI point-to-point communication.
• Accordingly, these types of calls should be terminated with MPI_Wait.

58

Collective Asynchronous Operations

For each collective I/O routine, there is a split variant.
• A collective I/O operation can begin at some point and end at some

later point.
• When using file pointers: MPI_File_read_all_begin/end;

MPI_File_write_all_begin/end
• When using explicit offsets: MPI_File_read_at_all_begin/end;

MPI_File_write_at_all_begin/end
• When using shared pointers: MPI_File_read_ordered_begin/end;

MPI_File_write_ordered_begin/end

59

Passing Along Hints to MPI-IO
MPI_Info info;
MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR,
info, &fh);

MPI_Info_free(&info);

60

Examples of Hints (also used in ROMIO)
• striping_unit
• striping_factor
• cb_buffer_size
• cb_nodes

• ind_rd_buffer_size
• ind_wr_buffer_size

• start_iodevice
• pfs_svr_buf
• direct_read
• direct_write

MPI-2 predefined hints

New algorithm
parameters

Platform-specific hints

61

MPI-IO Summary

• MPI-IO has many features that can help users achieve high
performance

• The most important of these features are:
– the ability to specify noncontiguous accesses
– the collective I/O functions
– the ability to pass hints to the implementation

• In particular, when accesses are noncontiguous, users must:
– Create derived datatypes
– Define file views
– Use the collective I/O functions

• Use of these features is encouraged, because I/O is expensive! It’s
best to let the system make tuning decisions on your behalf.

62

7. Status of MPI-2

63

Features of MPI-2

• Parallel I/O (MPI-IO) – probably the most popular
• One-sided communication (put / get)
• Dynamic process management (spawn)
• Expanded collective communication operations (e.g., non-blocking)
• Support for multithreading
• Additional support for programming languages

– C++ interface
– limited F90 support
– interfaces for debuggers, profilers

64

MPI-2 Status Assessment

• Virtually all vendors offer MPI-1
– Well-established free implementations (MPICH, OpenMPI) support

networks of heterogeneous workstations, e.g.
– The functionality of MPI-1 (or even a subset) is sufficient for most

applications
• Reasonable MPI-2 implementations are available from most vendors
• MPI-2 implementations have tended to appear in stages with I/O first

– MPI-IO now available in most MPI implementations
– One-sided communication available in some where hardware supports it
– OpenMPI (aka LAM) and MPICH2 now becoming complete
– Dynamic process management may not mesh well with batch systems

65

References

• William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI,
Second Edition (MIT Press, 1999)

• William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2 (MIT
Press, 1999)

http://www.scribd.com/doc/28220855/Using-MPI-2-Advanced-Features

• Index to the MPI 1.1 standard
http://www.mpi-forum.org/docs/mpi-11-html/node182.html

• Index to the MPI 2 standard
http://www.mpi-forum.org/docs/mpi-20-html/node306.htm

• The I/O Stress Benchmark Codes
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/ior/

http://www.scribd.com/doc/28220855/Using-MPI-2-Advanced-Features
http://www.mpi-forum.org/docs/mpi-11-html/node182.html
http://www.mpi-forum.org/docs/mpi-20-html/node306.htm
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/ior

	Programming with MPI:�Advanced Topics
	Goals
	Introduction and Outline
	1. Advanced Point-to-Point Communication
	Types of Parallel Overhead in Point-to-Point Calls
	Standard Send, Receive
	Synchronous and Buffered Modes
	Ready Mode and Deadlock
	Discussion of Send Modes
	MPI_Sendrecv and MPI_Sendrecv_replace
	Non-Blocking Calls
	Use of Non-Blocking Communication
	Sandwich Shop Analogy
	MPI_Wait and MPI_Test
	Other Ways to Gain Flexibility in Communication
	2. Persistent Communication
	How Persistent Communication Works
	Typical Situation Where Persistence Might Be Used
	Performance Benefits from Using Persistence
	3. Communicators and Groups
	Communicators and Groups: Definitions
	Subdividing Communicators: Approach #1
	Arguments to MPI_Comm_split
	Subdividing Communicators: Approach #2
	Code for Approach #2
	Communicators and Groups: Summary
	Review: Scatter and Gather
	Introducing Scatterv, Gatherv
	Scatter vs. Scatterv
	Allgatherv Example
	5. Derived Datatypes
	Derived Datatypes: Motivation
	General Datatypes
	Picturing Some Derived Datatypes
	Using MPI’s Vector Type
	6. Parallel I/O (MPI-2)
	Parallel I/O with MPI-IO
	MPI-IO Advantages
	Noncontiguous Accesses
	Simple MPI-IO
	File Pointers and Offsets
	Reading by Using Individual File Pointers – C Code
	Reading by Using Explicit Offsets – F90 Code
	Operations with Pointers, Offsets, Shared Pointers
	File Views
	Example #1: File Views for a Four-Task Job
	File View Examples
	Example #1: File Views for a Four-Task Job
	Code for Example #1
	Example #2: File Views for a Four-Task Job
	Code for Example #2
	Collective I/O in MPI
	MPI Routines for Collective I/O
	Advantages of Collective I/O
	Collective Choreography
	Asynchronous Operations
	Collective Asynchronous Operations
	Passing Along Hints to MPI-IO
	Examples of Hints (also used in ROMIO)
	MPI-IO Summary
	7. Status of MPI-2
	Features of MPI-2
	MPI-2 Status Assessment
	References

