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What is Stampede? 

• NSF-funded XSEDE project at TACC 

• New HPC system with two main components 

– 2+ petaflop/s Intel Xeon E5 based Dell cluster to be the new workhorse 

for the NSF open science community (>3x Ranger) 

– 7+ additional petaflop/s of Intel Xeon Phi™ SE10P coprocessors to 

change the power/performance curves of supercomputing 

• Complete ecosystem for advanced computing 

– HPC cluster, storage, interconnect 

– Visualization subsystem (144 high-end GPUs) 

– Large memory support (16 1TB nodes)  

– Global work file system, archive, other data systems 

– People, training, documentation to support computational science 
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Construction Under Way at TACC, May 2012 

Left: water chiller plant; right: addition to main facility 

 

 

 

 

 

 

 

 

 

 

 

 
 

Photo credit: Steve Lantz 
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Stampede Specs from News Releases 

• 6400 Dell C8220X nodes in initial system 

– 16 Xeon E5 “Sandy Bridge” cores per node, 102400 total  

– 32GB memory per node, 200TB total 

• At least 6400 Xeon Phi™ SE10P coprocessor cards 

– 61 core, 4 hardware threads per core 

– 8 GB additional memory per card 

• 14+ PB storage 

– Lustre parallel filesystem 

– 4864 3TB drives 
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Photo by TACC, June 2012 
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Stampede Specs from News Releases 

• 56Gb/s InfiniBand, fat-tree interconnect 

–  ~75 miles of cables 

– < 1.2 μS latency 

– Compare Lonestar: 32Gb/s (eff.) 

• 15PF+ after upgrade in 2015 

• Nearly 200 racks 

• SIX MEGAWATTS total power 

– Thermal energy storage  

     cuts costs 

• Datacenter expansion of  

     10,000 sq. ft. 
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Photo by TACC, June 2012 
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Stampede Footprint vs. Ranger 

 

 

 

 

 

 

 

 

 

 

• Capabilities are 17x; footprint is 2.7x; power draw is 2.1x  
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Ranger: 3000 ft2 

 0.6 PF 

 3 MW 

Stampede:  

8000 ft2 

10 PF 

6.5 MW 
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How Does Stampede Reach Petaflop/s? 

• Hardware trend since around 2004: processors gain more cores 

(execution engines) rather than greater clock speed 

– IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz; 

meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz 

– Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron) 

now have 4, 8, even 16 cores, running at 1.6–3.2 GHz 

• Does it mean Moore’s Law is dead? No! 

– Transistor densities are still doubling every 2 years 

– Clock rates have stalled at < 4 GHz due to power consumption 

– Only way to increase flop/s/watt is through greater on-die parallelism… 
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CPU Speed and Complexity Trends 

12/11/2012 

Committee on Sustaining Growth in Computing Performance, National Research Council.  

"What Is Computer Performance?"  

In The Future of Computing Performance: Game Over or Next Level?  

Washington, DC: The National Academies Press, 2011. 
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Implications for Petaflop/s Machines 

• Only way to increase flop/s/watt is through greater on-die 

parallelism! 

• These trends hold true for non-CPU devices too 

– Processors for mobile devices, e.g. 

• If 1 chip holds 10s of the best cores, why not 100s of weaker ones? 

– Around 2007–8, “Cell” chips had 1 main and 8 synergistic processors 

– But then something else was recognized…  
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GPUs: Highly Parallel Hardware is in PCs Already  

• High-end graphics processing units (GPUs) contain 100 or 1000s of 

thread processors and enough RAM to rival CPUs in compute 

capability 

• GPUs have been further tailored for HPC 

• Stampede example: NVIDIA Tesla K20 

– 2496 CUDA cores @ 732 MHz 

– 5GB dedicated memory 

– 1.17 Tflop/s peak DP rate 

– 225W power consumption  

• Initially there were hardware obstacles to using GPUs for general 

calculations, but these have been overcome 

– ECC memory, double precision, IEEE-compliant arithmetic are built in 

– What about software…? 
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Tesla GPU 
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General Purpose Computing on GPUs (GPGPU) 

• NVIDIA CUDA (2006) has been the forerunner in this area 

– SDK + API that permits programmers to use the C language to code 

algorithms for execution on NVIDIA GPUs (must be compiled with nvcc) 

– Stream processing: GPU executes a code “kernel” on a stream of 

inputs 

– Works well if kernel is multithreaded, vectorized (SIMD), pipelined 

• OpenCL (2008) is a more recent, open standard originated by Apple 

– C99-based language + API that enables data-parallel computation on 

GPUs as well as CPUs (e.g., ARM) 

• Nontrivial (re)coding may be needed, based on a specialized API 

– Good performance depends on very specific tuning to cache sizes, etc. 

– Hard to keep thread processors busy over slow PCIe interconnect 

– Resulting code is far less portable due to the API and special tuning 
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The Intel Approach: MIC 

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card 

that features >50 cores: released as Xeon Phi™, used in Stampede 

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA 

– Incorporates lessons learned from several internal development efforts: 

“Larrabee”, 80-core Terascale chip, Single-Chip Cloud (SCC) 

– Answers the question: if 8 modern Xeon cores fit on a die, how many 

early Pentiums would fit? 

• Addresses the API problem: standard x86 instructions are supported 

– Includes 64-bit addressing 

– Other recent x86 extensions may not be available 

– Special instructions are added for an extra-wide (512-bit) vector register 

• MIC supports general-purpose executables built using familiar Intel 

compilers, libraries, and analysis tools 
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Coprocessor vs Accelerator 
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Coprocessor Accelerator 

Architecture x86, multi-core, vector Streaming processors 

Coherent cache Shared memory, caches 

Programming Model Extensions to C/Fortran CUDA, OpenCL 

Threading OpenMP, explicit 

threading 

Hardware threads, little 

user control 

May use communication, 

synchronization 

Mostly independent 

MPI Host ↔ Host 

Host ↔ MIC 

Host ↔ Host 

Programming Constructs Serial, Thread, Vector Stream 

www.cac.cornell.edu 13 



MIC Architecture 

• SE10P is first production version used in Stampede 

– Chip, memory on PCIe card 

– 61 cores, each containing:  

• 64 KB L1 cache 

• 512 KB L2 cache 

• 512 byte vector unit 

• 4 hardware threads 

• In-order instruction pipeline 

– 31.5 MB total coherent L2  

    cache, connected by ring bus 

– 8 GB GDDR5 memory 

• Very fast, 352 GB/s vs 

    50 GB/s/socket for E5 
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MIC vs. CPU 

 

• Number of cores 

• Clock Speed (GHz) 

• SIMD width (bit) 

• DP GFLOPS/core 

• HW threads/core 
 

 

• CPUs designed for all workloads, high single-thread performance  

• MIC also general purpose, though optimized for number crunching 

– Focus on high aggregate throughput via lots of weaker threads 

12/11/2012 

MIC (SE10P) CPU (E5) MIC is… 

61 8 much higher 

1.01 2.7 lower 

512 256 higher 

16+ 21+ lower 

4 1* higher 
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Two Types of CPU/MIC Parallelism 

• Threading (work-level parallelism) 

– OpenMP, Cilk Plus, TBB, Pthreads, etc  

– It’s all about sharing work and scheduling  

• Vectorization (data-level parallelism) 

– “Lock step” Instruction Level Parallelization (SIMD)  

– Requires management of synchronized instruction execution 

– It’s all about finding simultaneous operations 

• To fully utilize MIC, both types of parallelism need to be identified 

and exploited 

– Need at 2-4 threads to keep a MIC core busy (in-order execution stalls) 

– Vectorized loops gain 8x performance on MIC! 

– Important for CPUs as well: gain of 4x on Sandy Bridge 
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Threading 
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Vectorization 

• Instruction set: Streaming SIMD instructions (SSE, AVX) 

• Single Instruction Multiple Data (SIMD) 

• Wide vector registers hold multiple SP, DP or integer values 

• One operation produces, 2, 4, 8, results or more. 

• Compilers are good at vectorizing inner loops automatically as an 

optimization 

– … but they need help 

– Make sure each iteration is independent 

– Align data to “good” boundaries of registers and cache 

• Xeon Phi vector width twice as wide as E5 CPU 

– Twice as many calculations vector operation   
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Parallelism and Performance on MIC and CPU 
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• PCIe card with Intel 

Xeon Phi™ (MIC) 

• Host with dual Intel Xeon 

“Sandy Bridge” (CPU) 

Typical Configuration of a Future Stampede Node 
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Linux OS Linux 

micro OS 

PCIe 

HCA 

Access from network: 

ssh <host> (OS) 

ssh <coprocessor> 

       (mOS) 

Virtual IP* 

service for MIC 

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar 
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Strategies for HPC Codes 
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No change – 

run on CPUs, 

MICs, or both 

Expand existing 

hybrids; or, add 

OpenMP offload 

Build on libraries 

like Intel MKL, 

PETSc, etc. 

MPI code: 

could be hybrid 

with OpenMP 
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Programming Models for Stampede – 1 
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Offload Execution  

• Directives indicate data and 

functions to send from CPU 

to MIC for execution 

• Unified source code  

• Code modifications required 

• Compile once with offload 

flags 

– Single executable includes 

instructions for MIC and CPU 

• Run in parallel using MPI 

and/or scripting, if desired 

Courtesy Scott McMillan, Intel 
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Programming Models for Stampede – 2 
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“Symmetric” Execution 

• Message passing (MPI) on 

CPUs and MICs alike 

• Unified source code 

• Code modifications optional 

– Assign different work to 

CPUs vs. MICs 

– Multithread with OpenMP for 

CPUs, MICs, or both 

• Compile twice, 2 executables 

– One for MIC, one for host 

• Run in parallel using MPI 

 Courtesy Scott McMillan, Intel 
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Pros and Cons of MIC Programming Models 

• Offload engine: MIC acts as coprocessor for the host 

– Pros: distinct hardware gets distinct role; programmable via simple calls 

to a library such as MKL, or via directives (we’ll go into depth on this) 

– Cons: PCIe is the path for most work; difficult to retain data on card 

• “Symmetric” #1: Everything is just an MPI core 

– Pros: MPI works for all cores (though 1 MIC core < 1 server core) 

– Cons: memory may be insufficient to support a mOS plus lots of data; 

fails to take good advantage of shared memory; PCIe is a bottleneck 

• “Symmetric” #2: Both MIC and host are just SMPs 

– Pros: MPI/OpenMP works for both host and MIC; more efficient use of 

limited PCIe bandwidth and limited MIC memory 

– Cons: hybrid programming is already tough on homogeneous SMPs; 

not much experience with OpenMP-based hybrids scaling to 50+ cores 
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Using Compiler Directives to Offload Work 

• OpenMP’s directives provide a natural model 

– 2010: OpenMP working group starts to consider accelerator extensions 

– Related efforts are launched to target specific types of accelerators… 

• LEO, Language Extensions for Offload 

– Intel moves forward to support processors and coprocessors, initially 

• OpenACC 

– PGI moves forward to support GPUs, initially 

• Will OpenMP 4.0 produce a compromise among all the above? 

– Clearly desirable, but it’s difficult 

– Other devices exist: network controllers, antenna A/D, cameras… 

– Exactly what falls in the “accelerator” class? How diverse is it? 

– Are “coprocessors” a distinct class? 
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OpenMP Offload Constructs: Base Program 

 

 

• Objective: offload foo to 

a device  

• Use OpenMP to do the 

offload 
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#include <omp.h>  
#define N 10000  
 
void foo(double *, double *, double *, int ); 
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;} 
 
     ... 
 
     foo(a,b,c,N);  
}  
 
void foo(double *a, double *b, double *c, int n){  
     int i; 
 
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }  
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OpenMP Offload Constructs: Requirements 

 

 

• Direct compiler to offload 

function or block  

• “Decorate” function and 

prototype  

• Ideally, familiar-looking 

OpenMP directives work 

on device  
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#include <omp.h>  
#define N 10000  
#pragma omp <offload_function_spec>  
void foo(double *, double *, double *, int );  
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}  
 
     ... 
     #pragma omp <offload_this>  
     foo(a,b,c,N);  
}  
#pragma omp <offload_function_spec>  
void foo(double *a, double *b, double *c, int n){  
     int i;  
     #pragma omp parallel for  
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }   
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Early MIC Programming Experiences 

• Codes port easily 

– Minutes to days depending mostly on library dependencies 

• Performance requires real work 

– Really need to put in the effort to get what you expect 

• Optimizing for MIC is similar to optimizing for CPUs 

– “Optimize once, run anywhere”  

– Early MIC ports of real codes can show 2x Sandy Bridge performance 

• Scalability is pretty good 

– Forking multiple threads per core is really important 

– Getting your code to vectorize is also really important 
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Roadmap: What Comes Next? 

• Expect many of the upcoming large systems to be accelerated 

• MPI + OpenMP will be the main HPC programming model 

– If you are not using Intel TBBs or Cilk 

– If you are not spending all your time in libraries (MKL, etc.) 

• Many HPC applications are pure-MPI codes 

– Start thinking about upgrading to a hybrid scheme 

– Adding OpenMP is a larger effort than adding MIC directives 

• Special MIC/OpenMP considerations 

– Many more threads will be needed: 

60+ cores on production Xeon Phi™ ➞ 60+/120+/240+ threads 

– Good OpenMP scaling (and vectorization) are much more important 

• Stampede to deploy January 2013 
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Reference 

• Much of the information in this talk was gathered from presentations 

at the TACC–Intel Highly Parallel Computing Symposium, Austin, 

Texas, April 10–11, 2012: http://www.tacc.utexas.edu/ti-hpcs12. 

• Early draft Stampede User Guide https://portal.tacc.utexas.edu/user-

guides/stampede 

• Intel press materials http://newsroom.intel.com/docs/DOC-3126 

• Intel MIC developer information http://software.intel.com/mic-

developer 
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