
Steve Lantz

Senior Research Associate

Cornell CAC

Parallel Computing at TACC: Ranger to Stampede Transition

December 11, 2012

Parallel Programming

on Ranger and Stampede

What is Stampede?

• NSF-funded XSEDE project at TACC

• New HPC system with two main components

– 2+ petaflop/s Intel Xeon E5 based Dell cluster to be the new workhorse

for the NSF open science community (>3x Ranger)

– 7+ additional petaflop/s of Intel Xeon Phi™ SE10P coprocessors to

change the power/performance curves of supercomputing

• Complete ecosystem for advanced computing

– HPC cluster, storage, interconnect

– Visualization subsystem (144 high-end GPUs)

– Large memory support (16 1TB nodes)

– Global work file system, archive, other data systems

– People, training, documentation to support computational science

12/11/2012 www.cac.cornell.edu 2

Construction Under Way at TACC, May 2012

Left: water chiller plant; right: addition to main facility

Photo credit: Steve Lantz

12/11/2012 www.cac.cornell.edu 3

Stampede Specs from News Releases

• 6400 Dell C8220X nodes in initial system

– 16 Xeon E5 “Sandy Bridge” cores per node, 102400 total

– 32GB memory per node, 200TB total

• At least 6400 Xeon Phi™ SE10P coprocessor cards

– 61 core, 4 hardware threads per core

– 8 GB additional memory per card

• 14+ PB storage

– Lustre parallel filesystem

– 4864 3TB drives

12/11/2012

Photo by TACC, June 2012

www.cac.cornell.edu 4

Stampede Specs from News Releases

• 56Gb/s InfiniBand, fat-tree interconnect

– ~75 miles of cables

– < 1.2 μS latency

– Compare Lonestar: 32Gb/s (eff.)

• 15PF+ after upgrade in 2015

• Nearly 200 racks

• SIX MEGAWATTS total power

– Thermal energy storage

 cuts costs

• Datacenter expansion of

 10,000 sq. ft.

 12/11/2012

Photo by TACC, June 2012

www.cac.cornell.edu 5

Stampede Footprint vs. Ranger

• Capabilities are 17x; footprint is 2.7x; power draw is 2.1x

12/11/2012

Ranger: 3000 ft2

 0.6 PF

 3 MW

Stampede:

8000 ft2

10 PF

6.5 MW

www.cac.cornell.edu 6

How Does Stampede Reach Petaflop/s?

• Hardware trend since around 2004: processors gain more cores

(execution engines) rather than greater clock speed

– IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz;

meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz

– Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron)

now have 4, 8, even 16 cores, running at 1.6–3.2 GHz

• Does it mean Moore’s Law is dead? No!

– Transistor densities are still doubling every 2 years

– Clock rates have stalled at < 4 GHz due to power consumption

– Only way to increase flop/s/watt is through greater on-die parallelism…

12/11/2012 www.cac.cornell.edu 7

CPU Speed and Complexity Trends

12/11/2012

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

www.cac.cornell.edu 8

Implications for Petaflop/s Machines

• Only way to increase flop/s/watt is through greater on-die

parallelism!

• These trends hold true for non-CPU devices too

– Processors for mobile devices, e.g.

• If 1 chip holds 10s of the best cores, why not 100s of weaker ones?

– Around 2007–8, “Cell” chips had 1 main and 8 synergistic processors

– But then something else was recognized…

12/11/2012 www.cac.cornell.edu 9

GPUs: Highly Parallel Hardware is in PCs Already

• High-end graphics processing units (GPUs) contain 100 or 1000s of

thread processors and enough RAM to rival CPUs in compute

capability

• GPUs have been further tailored for HPC

• Stampede example: NVIDIA Tesla K20

– 2496 CUDA cores @ 732 MHz

– 5GB dedicated memory

– 1.17 Tflop/s peak DP rate

– 225W power consumption

• Initially there were hardware obstacles to using GPUs for general

calculations, but these have been overcome

– ECC memory, double precision, IEEE-compliant arithmetic are built in

– What about software…?

12/11/2012

Tesla GPU

www.cac.cornell.edu 10

General Purpose Computing on GPUs (GPGPU)

• NVIDIA CUDA (2006) has been the forerunner in this area

– SDK + API that permits programmers to use the C language to code

algorithms for execution on NVIDIA GPUs (must be compiled with nvcc)

– Stream processing: GPU executes a code “kernel” on a stream of

inputs

– Works well if kernel is multithreaded, vectorized (SIMD), pipelined

• OpenCL (2008) is a more recent, open standard originated by Apple

– C99-based language + API that enables data-parallel computation on

GPUs as well as CPUs (e.g., ARM)

• Nontrivial (re)coding may be needed, based on a specialized API

– Good performance depends on very specific tuning to cache sizes, etc.

– Hard to keep thread processors busy over slow PCIe interconnect

– Resulting code is far less portable due to the API and special tuning

12/11/2012 www.cac.cornell.edu 11

The Intel Approach: MIC

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card

that features >50 cores: released as Xeon Phi™, used in Stampede

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA

– Incorporates lessons learned from several internal development efforts:

“Larrabee”, 80-core Terascale chip, Single-Chip Cloud (SCC)

– Answers the question: if 8 modern Xeon cores fit on a die, how many

early Pentiums would fit?

• Addresses the API problem: standard x86 instructions are supported

– Includes 64-bit addressing

– Other recent x86 extensions may not be available

– Special instructions are added for an extra-wide (512-bit) vector register

• MIC supports general-purpose executables built using familiar Intel

compilers, libraries, and analysis tools

12/11/2012 www.cac.cornell.edu 12

Coprocessor vs Accelerator

12/11/2012

Coprocessor Accelerator

Architecture x86, multi-core, vector Streaming processors

Coherent cache Shared memory, caches

Programming Model Extensions to C/Fortran CUDA, OpenCL

Threading OpenMP, explicit

threading

Hardware threads, little

user control

May use communication,

synchronization

Mostly independent

MPI Host ↔ Host

Host ↔ MIC

Host ↔ Host

Programming Constructs Serial, Thread, Vector Stream

www.cac.cornell.edu 13

MIC Architecture

• SE10P is first production version used in Stampede

– Chip, memory on PCIe card

– 61 cores, each containing:

• 64 KB L1 cache

• 512 KB L2 cache

• 512 byte vector unit

• 4 hardware threads

• In-order instruction pipeline

– 31.5 MB total coherent L2

 cache, connected by ring bus

– 8 GB GDDR5 memory

• Very fast, 352 GB/s vs

 50 GB/s/socket for E5

12/11/2012 www.cac.cornell.edu 14

Courtesy Intel

MIC vs. CPU

• Number of cores

• Clock Speed (GHz)

• SIMD width (bit)

• DP GFLOPS/core

• HW threads/core

• CPUs designed for all workloads, high single-thread performance

• MIC also general purpose, though optimized for number crunching

– Focus on high aggregate throughput via lots of weaker threads

12/11/2012

MIC (SE10P) CPU (E5) MIC is…

61 8 much higher

1.01 2.7 lower

512 256 higher

16+ 21+ lower

4 1* higher

www.cac.cornell.edu 15

Two Types of CPU/MIC Parallelism

• Threading (work-level parallelism)

– OpenMP, Cilk Plus, TBB, Pthreads, etc

– It’s all about sharing work and scheduling

• Vectorization (data-level parallelism)

– “Lock step” Instruction Level Parallelization (SIMD)

– Requires management of synchronized instruction execution

– It’s all about finding simultaneous operations

• To fully utilize MIC, both types of parallelism need to be identified

and exploited

– Need at 2-4 threads to keep a MIC core busy (in-order execution stalls)

– Vectorized loops gain 8x performance on MIC!

– Important for CPUs as well: gain of 4x on Sandy Bridge

12/11/2012 www.cac.cornell.edu 16

Threading

12/11/2012 www.cac.cornell.edu 17

Courtesy Intel

Vectorization

• Instruction set: Streaming SIMD instructions (SSE, AVX)

• Single Instruction Multiple Data (SIMD)

• Wide vector registers hold multiple SP, DP or integer values

• One operation produces, 2, 4, 8, results or more.

• Compilers are good at vectorizing inner loops automatically as an

optimization

– … but they need help

– Make sure each iteration is independent

– Align data to “good” boundaries of registers and cache

• Xeon Phi vector width twice as wide as E5 CPU

– Twice as many calculations vector operation

12/11/2012 www.cac.cornell.edu 18

Parallelism and Performance on MIC and CPU

12/11/2012 www.cac.cornell.edu 19

Courtesy Intel

• PCIe card with Intel

Xeon Phi™ (MIC)

• Host with dual Intel Xeon

“Sandy Bridge” (CPU)

Typical Configuration of a Future Stampede Node

12/11/2012

Linux OS Linux

micro OS

PCIe

HCA

Access from network:

ssh <host> (OS)

ssh <coprocessor>

 (mOS)

Virtual IP*

service for MIC

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar

www.cac.cornell.edu 20

Strategies for HPC Codes

12/11/2012

No change –

run on CPUs,

MICs, or both

Expand existing

hybrids; or, add

OpenMP offload

Build on libraries

like Intel MKL,

PETSc, etc.

MPI code:

could be hybrid

with OpenMP

www.cac.cornell.edu 21

Programming Models for Stampede – 1

12/11/2012

Offload Execution

• Directives indicate data and

functions to send from CPU

to MIC for execution

• Unified source code

• Code modifications required

• Compile once with offload

flags

– Single executable includes

instructions for MIC and CPU

• Run in parallel using MPI

and/or scripting, if desired

Courtesy Scott McMillan, Intel
www.cac.cornell.edu 22

Programming Models for Stampede – 2

12/11/2012

“Symmetric” Execution

• Message passing (MPI) on

CPUs and MICs alike

• Unified source code

• Code modifications optional

– Assign different work to

CPUs vs. MICs

– Multithread with OpenMP for

CPUs, MICs, or both

• Compile twice, 2 executables

– One for MIC, one for host

• Run in parallel using MPI

 Courtesy Scott McMillan, Intel
www.cac.cornell.edu 23

Pros and Cons of MIC Programming Models

• Offload engine: MIC acts as coprocessor for the host

– Pros: distinct hardware gets distinct role; programmable via simple calls

to a library such as MKL, or via directives (we’ll go into depth on this)

– Cons: PCIe is the path for most work; difficult to retain data on card

• “Symmetric” #1: Everything is just an MPI core

– Pros: MPI works for all cores (though 1 MIC core < 1 server core)

– Cons: memory may be insufficient to support a mOS plus lots of data;

fails to take good advantage of shared memory; PCIe is a bottleneck

• “Symmetric” #2: Both MIC and host are just SMPs

– Pros: MPI/OpenMP works for both host and MIC; more efficient use of

limited PCIe bandwidth and limited MIC memory

– Cons: hybrid programming is already tough on homogeneous SMPs;

not much experience with OpenMP-based hybrids scaling to 50+ cores

12/11/2012 www.cac.cornell.edu 24

Using Compiler Directives to Offload Work

• OpenMP’s directives provide a natural model

– 2010: OpenMP working group starts to consider accelerator extensions

– Related efforts are launched to target specific types of accelerators…

• LEO, Language Extensions for Offload

– Intel moves forward to support processors and coprocessors, initially

• OpenACC

– PGI moves forward to support GPUs, initially

• Will OpenMP 4.0 produce a compromise among all the above?

– Clearly desirable, but it’s difficult

– Other devices exist: network controllers, antenna A/D, cameras…

– Exactly what falls in the “accelerator” class? How diverse is it?

– Are “coprocessors” a distinct class?

12/11/2012 www.cac.cornell.edu 25

OpenMP Offload Constructs: Base Program

• Objective: offload foo to

a device

• Use OpenMP to do the

offload

12/11/2012

#include <omp.h>
#define N 10000

void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...

 foo(a,b,c,N);
}

void foo(double *a, double *b, double *c, int n){
 int i;

 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

www.cac.cornell.edu 26

OpenMP Offload Constructs: Requirements

• Direct compiler to offload

function or block

• “Decorate” function and

prototype

• Ideally, familiar-looking

OpenMP directives work

on device

12/11/2012

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>
void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...
 #pragma omp <offload_this>
 foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
 int i;
 #pragma omp parallel for
 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

www.cac.cornell.edu 27

Early MIC Programming Experiences

• Codes port easily

– Minutes to days depending mostly on library dependencies

• Performance requires real work

– Really need to put in the effort to get what you expect

• Optimizing for MIC is similar to optimizing for CPUs

– “Optimize once, run anywhere”

– Early MIC ports of real codes can show 2x Sandy Bridge performance

• Scalability is pretty good

– Forking multiple threads per core is really important

– Getting your code to vectorize is also really important

12/11/2012 www.cac.cornell.edu 28

Roadmap: What Comes Next?

• Expect many of the upcoming large systems to be accelerated

• MPI + OpenMP will be the main HPC programming model

– If you are not using Intel TBBs or Cilk

– If you are not spending all your time in libraries (MKL, etc.)

• Many HPC applications are pure-MPI codes

– Start thinking about upgrading to a hybrid scheme

– Adding OpenMP is a larger effort than adding MIC directives

• Special MIC/OpenMP considerations

– Many more threads will be needed:

60+ cores on production Xeon Phi™ ➞ 60+/120+/240+ threads

– Good OpenMP scaling (and vectorization) are much more important

• Stampede to deploy January 2013

12/11/2012 www.cac.cornell.edu 29

Reference

• Much of the information in this talk was gathered from presentations

at the TACC–Intel Highly Parallel Computing Symposium, Austin,

Texas, April 10–11, 2012: http://www.tacc.utexas.edu/ti-hpcs12.

• Early draft Stampede User Guide https://portal.tacc.utexas.edu/user-

guides/stampede

• Intel press materials http://newsroom.intel.com/docs/DOC-3126

• Intel MIC developer information http://software.intel.com/mic-

developer

12/11/2012 www.cac.cornell.edu 30

http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
http://newsroom.intel.com/docs/DOC-3126
http://newsroom.intel.com/docs/DOC-3126
http://newsroom.intel.com/docs/DOC-3126
http://newsroom.intel.com/docs/DOC-3126
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer

