
Best Practices for Software Development in

the Research Environment

Adam Brazier – brazier@cornell.edu

Computational Scientist

 Cornell University Center for Advanced Computing (CAC)

www.cac.cornell.edu

Why?

www.cac.cornell.edu

• We know how to write computer programs! You can’t teach us
anything!

– None of this is compulsory.

– Many of the topics are low-hanging fruit, with relatively obvious
advantages; they also link together and support each other

– Knowing what’s out there is a big advantage even if you don’t use it

• Can make transitions when they make sense for your working practices

• Can understand the software others who are using these practices

– HPC produces good output quickly, but it can also produce bad output –
and cost a lot of money – very quickly as well. The stakes are high.

The research environment is different from many

other software environments

• HPC a key focus

• Time limitations

– Opportunity cost big concern, c.f. financial

• Target audience are expert

• The software is not the end goal in itself

• Coders often from research domains

• Individual “ownership” of software products common

1/13/2015 www.cac.cornell.edu 3

Mad? You call me mad?

Overview

• Coding practices

– (because most of us are already coding)

• Software Lifecycle

– Cradle to Grave

• Improving the Software

– Faster. Better. Stronger

1/13/2015 www.cac.cornell.edu 4

Overview

• Coding practices

– (because most of us are already coding)

• Software Lifecycle

– Cradle to Grave

• Improving the code

– Faster. Better. Stronger

1/13/2015 www.cac.cornell.edu 5

There’s a new Sheriff in

town! Do it like I say or

you’re doing it wrong.

Overview

• Coding practices

– (because most of us are already coding)

• Software Lifecycle

– Cradle to Grave

• Improving the code

– Faster. Better. Stronger

1/13/2015 www.cac.cornell.edu 6

There’s a new Sheriff in

town! Do it like I say or

you’re doing it wrong.

Who needs what?

Group Solo coders Team coders Project

manager

User

Code clarity,

commenting

   

Documentation    

Versioning    

Requirements    

Estimation    

Design    

Testing    

Deployment,

upgrades,

integration

   

1/13/2015 www.cac.cornell.edu 7

Overview

• Coding practices

– (because many of us are already coding)

• Software Lifecycle

– Cradle to Grave

• Improving the Software

– Faster. Better. Stronger

1/13/2015 www.cac.cornell.edu 8

Coding Practices

• Readability of the code

• Code organization

• Commenting and documentation

• Using an IDE

• Versioning and source control

1/13/2015 www.cac.cornell.edu 9

The Rosetta Stone. You shouldn’t

need one of these to follow code

Coding practices: a general rule to remember

 Coding is a human endeavor!

– Humans can absorb information, see patterns and comprehend

structure very well if the information is formatted appropriately

– People forget things; documentation is important

– Much of the work you do on your code is not the initial writing.

Appropriate effort making it understandable is repaid again and again.

– Even machine-generated code may have to be read by humans.

1/13/2015 www.cac.cornell.edu 10

Coding Practices: Readability

• There is no shame in writing code to be readable. The opposite, in

fact!

• Targets:

– Future you

– Other people

• “Readability” means being clear to people

– People are good at recognizing patterns

– People do not generally like dense text

• Most languages have their own style preferences

1/13/2015 www.cac.cornell.edu 11

Dogs prefer readable code, too!

Coding Practices: simple readability example:

formatting

• Both of these execute the same (taken from a longer code)

1/13/2015 www.cac.cornell.edu 12

Coding Practices: some general readability rules

• Use whitespace to:

– Group code together (particularly by indentation)

– Make code more readable

– Spaces instead of tabs (IDE can be set to insert spaces when you tab)

• Do not produce very long lines of code.

– Shorter lines allow for multiple editor windows

– 80 or 100 characters a good limit

• Limit the number of text lines in a given file if possible

– But don’t try to pack a lot of operations into one line!

• Unless performance benefits (in which case, comment)

1/13/2015 www.cac.cornell.edu 13

Coding Practices: semantic content

• Names can be informational

– Variable names describe content and/or type

– Method names describe function

– File names summarize contents

– Aids self-documentation of code

• Be consistent

• Avoid ambiguity

• Spend time on this!

– Check out Ottinger's rules

1/13/2015 www.cac.cornell.edu 14

Misunderstandings are bad

http://objectmentor.com/resources/articles/naming.htm
http://objectmentor.com/resources/articles/naming.htm
http://objectmentor.com/resources/articles/naming.htm

Coding Practices: organization of code

• Use multiple files, appropriately named

– Can’t find a suitable name for a file to summarize its contents?

• Perhaps there should more than one file

– Makes code more manageable

– Separate data from code

• No magic numbers or strings!

– Allows simpler collaborative coding

– Enhances reusability

• Use multiple directories

– Software often has subproducts

– Datafiles stored away from code

– Namespaces (see next)

1/13/2015 www.cac.cornell.edu 15

Organization is good

Coding Practices: namespacing

• Why?

– Avoids collisions

• Enables descriptive naming

• Simpler integration of software

 os.path.join(a, *p)

 forests.path.join(path1, path2)

• Typically mirrors directory structure

• Plan it ahead of time

– Part of design process

1/13/2015 www.cac.cornell.edu 16

Collisions are bad

Example: the edu.cornell.soc.bdo.persistence namespace

• Functions are, eg, edu.cornell.soc.bdo.persistence.taskStore.<function>

1/13/2015 www.cac.cornell.edu 17

Coding Practices: commenting and documenting

• Typically:

– Documentation explains what software product does, written for users

– Comments refer to the code itself, written for coders

– In the research environment, users and coders are often the same

• Comments and documentation are free-form

– Can be written purely to communicate information

– Provide substantial help to their target audience

– Enhance productivity and mitigate problems:

• Comments are not a substitute for good coding, but do make the code

easier to understand

• Documentation not a substitute for deficiencies in the software but can

enhance user productivity and/or reduce user frustration

1/13/2015 www.cac.cornell.edu 18

Coding Practices: Comment to prevent problems

1/13/2015 www.cac.cornell.edu 19

• Comments should make clear what might otherwise not be clear

When you have done what you can to eliminate the impossible, there

may still be more than one answer

Coding Practices: useful comments

• May summarize code functionality

– self-documenting code better

• May explain things which might not be obvious at first glance

• May explain why things are done the way they are

• May highlight future work

– e.g., IDE may collate TODO elements to produce a punchlist for future

work

1/13/2015 www.cac.cornell.edu 20

Coding practices: some commenting examples

Useful

#Removing colons from file name

#in case this is run on windows

filename = filename.replace(':', '-')

#Database can’t handle unicode

name = name.encode('ascii','ignore')

#returns tuple for getitem rather than
#list, to duplicate pyodbc row behavior

#TODO: add datetime (which must also

#be quoted like a string)

Not-good

#Don’t need this anymore

#Need to fix this!

#Function returns int

#Iterates through list of animals

#and selects quadrupeds. Lister must

#be a list of animals

def finder(lister):

1/13/2015 www.cac.cornell.edu 21

So delete it (and the comment!)

Fix what? What’s wrong?

Make it obvious in the code!

Pick better names! E.g.,

def quadruped_finder (animal_list):

string[] quadruped_finder(Animals
animalList){

}

Coding practices: some commenting examples

Not-good

#Don’t need this anymore

#Need to fix this!

#Function returns int

#Iterates through list of animals

#and selects quadrupeds. Lister must

#be a list of animals

def finder(lister):

1/13/2015 www.cac.cornell.edu 22

Coding Practices: and…

• As comments aren’t executed, they may be used in debugging and

development to exclude code sections without deleting them

• Don't leave commented-out code in production version!

• On longer timescales, use versioning

1/13/2015 www.cac.cornell.edu 23

Coder at work

• Its value typically increases as time passes

• It is typically produced at the end

 Easily neglected

• To reduce the impact of this neglect:

– Self-documenting code

– Document generation:

• May use commenting features

• May be code-specific (e.g., javadocs, python docstrings, etc)

• Can be achieved with other software (e.g., Doxygen, Sphinx).

Coding Practices: documentation

1/13/2015 www.cac.cornell.edu 24

Coding’s done. Can I sleep now?

1/13/2015 www.cac.cornell.edu 25

Coding Practices: Integrated Development

Environment (IDE)

• Varying features, but often include:

– Code editor with smart indenting

– Syntax highlighting

– Code completion

– Code inspection

– Debugger

– Code refactoring

– Documentation display

• Linux IDEs include:

– Eclipse (Java, C++, Python, Fortran...)

– Netbeans (Java, C++, PHP)

– MonoDevelop (C#, F#, C/C++...)

– Emacs can be configured as an IDE (many languages)

1/13/2015 www.cac.cornell.edu 26

1/13/2015 www.cac.cornell.edu 27

Editor windows

1/13/2015 www.cac.cornell.edu 28

Console/utilities

Project Explorer

Class/object

explorer

Task management

Coding Practices: The last change broke the code!

Where did I save the previous, working version?

1/13/2015 www.cac.cornell.edu 29

Coding Practices: the last change broke the code!

Where did I save the previous, working version?

1/13/2015 www.cac.cornell.edu 30

(Actually, Picard would use versioning)

Coding Practices: versioning and source control

• A versioning system typically called a (code) repository

• Versioning has many benefits:

– Checkpointing development

– Can roll back to previous versions

– Can start a branch for development

– Enables collaborative software development

• code conflict resolution, distribution to multiple recipients

• Most current versioning systems:

– Show diffs between committed code versions, highlight code conflicts,

enable merges

– Have command-line and graphical interfaces, IDE integration
1/13/2015 www.cac.cornell.edu 31

Coding Practices: what is distributed versioning?

1/13/2015 www.cac.cornell.edu 32

Coding Practices: versioning decisions, decisions.

• Common versioning systems:

– Older:

• CVS: now somewhat venerable but still in use

• Subversion (SVN): common CVS replacement

– Distributed version control

• Mercurial: focus on usability

• Git: powerful, developed by linux kernel team

– Hosting with web-based interfaces include:

• Sourceforge (SVN, Git, Mercurial)

• Bitbucket (Git, Mercurial)

• Github (Git)

• Git installed on Stampede:

– Load the Git module to get a recent version

1/13/2015 www.cac.cornell.edu 33

Branches, commits and tags

Coding Practices: Git exercise. What is Git doing?

1/13/2015 www.cac.cornell.edu 34

Coding Practices: Git exercise. Create repository

• Log into Stampede.

– mkdir gitTest

– load module git

– cd gitTest

– git clone https://github.com/cornell-comp-
internal/CAC-git-sandbox.git

– cd CAC-git-sandbox/

– ls -a

1/13/2015 www.cac.cornell.edu 35

Coding Practices: Git exercise. Setup, editing a

document

• git config --global user.name “<your name>“

• git config --global user.email “<your email>“

• cd Stampede_workshop

• ls

• Open the file ourTextFile.txt

– Edit in a line at the end (end with newline)

– Close and save

1/13/2015 www.cac.cornell.edu 36

Coding Practices: Git exercise. Status, committing

• git status

• git add ourTextFile.txt

• git commit –m "<your commit message>"

• git status

1/13/2015 www.cac.cornell.edu 37

Coding Practices: Git exercise. Oh no, a conflict!

• I will make some changes to the ourTextFile.txt on Github

• We now have a conflict between the two versions

• git pull origin master

1/13/2015 www.cac.cornell.edu 38

Coding Practices: Git exercise. Resolving conflicts

• Open ourTestFile.txt for editing

• Resolve the conflict between <<<< and >>>> SHA1

– Be sure to remove those as well

• git add Stampede_workshop/ourTestFile.txt

• git commit –m "<your commit message>"

1/13/2015 www.cac.cornell.edu 39

Coding Practices: Git exercise. I preferred the old

version!

• Use git log to find the commit SHA1 from the initial commit

• git checkout <SHA1> Stampede_workshop/ourTestFile.txt

• Read the file! You can git commit to make the reversion stick

1/13/2015 www.cac.cornell.edu 40

Coding Practices: Distributed version control with

Git

• Pushing back to a remote repository (including Github) is generally
done with git push

• Unless someone is waiting on your version, it’s normally OK to push

at end of day, but every team has different policies

• Local commits should be done relatively frequently

• Git is not an alternative to backups, but should be integrated into a

backup solution (Github can be part of that)

1/13/2015 www.cac.cornell.edu 41

Coding Practices: learning Git

• www.git-scm.com (scm = “source code management”)

– Contains the text of the book “Pro Git” at www.git-scm.com/book

• Stack Overflow, etc (useful if you have a specific error message)

• https://github.com will typically give you five free private repositories

if you work in academic research (and have a .edu email address)

– Go to https://education.github.com and make a request

– Github gives each repository a markdown wiki

– Github has functionality for tracking issues

– Github’s pages also contain some Git advice

– Github has specific GUI clients which also take care of authentication

1/13/2015 www.cac.cornell.edu 42

http://www.git-scm.com/
http://www.git-scm.com/
http://www.git-scm.com/
http://www.git-scm.com/book
http://www.git-scm.com/book
http://www.git-scm.com/book
https://github.com/
https://education.github.com/

Overview

• Coding practices

– (because most of us are already coding)

• Software Lifecycle

– Cradle to Grave

• Improving the Software

– Faster. Better. Stronger

1/13/2015 www.cac.cornell.edu 43

Software Lifecycle

• The ages of software

– Requirements

– Design

– Implementation

– Testing/QA/acceptance

– Documentation

1/13/2015 www.cac.cornell.edu 44

Cradle to grave

Software Lifecycle

• The ages of software

– Requirements

– Design

– Implementation

– Testing/QA/acceptance

– Documentation

1/13/2015 www.cac.cornell.edu 45

C
o
n
tin

u
o
u
s

In
te

g
ra

tio
n
 Cradle to grave

Software Lifecycle: Requirements. I want it all!

• Requirements are like the contract between user and coding team

– In the research environment both groups may be the same people;

arguably requirements are as important in this case as any other

• Requirements must be testable

– A good check is to ask “how can I check if this requirement is met?”

• If you can’t answer that question, it’s not a requirement.

• Requirements may be split into two groups:

– Functional requirements

– Design constraints/non-functional requirements

 1/13/2015 www.cac.cornell.edu 46

Software Lifecycle: anatomy of a requirement

• Requirements are typically of this form:

 The X shall Y

• For example:

– “The calendar widget shall allow selection of discontiguous dates”

• (this is an example of a functional requirement)

– “The software system will average at least 1.1 GB of data processing

per minute, 95% of the time”

• (this is an example of a design constraint/non-functional requirement)

• Both of these requirements are testable.

1/13/2015 www.cac.cornell.edu 47

Software Lifecycle: pitfalls and perils

• Every requirement, in effect, costs time/money

– Not a negative statement; software costs time and money to make!

– The set of requirements should be necessary (obviously!)

• And sufficient…

• Changing the requirements can cost a lot of additional time/money

– Can cause substantial rework:

• Re-design and re-architecting

• Re-coding

– Sometimes requirement changes are needed

• Design, Architecture, implementation and test plans should be

linked to requirements

 1/13/2015 www.cac.cornell.edu 48

Software Lifecycle: some questions

• All software effort exists in a context

– Who will use this software?

– What resources are available or can be sought?

– How long might the product last?

– Will it support publications?

– What are our priorities?

• Requirements and design must be consistent with the answers to

these questions.

– Perhaps the worst outcome to a completed software development

project is to have produced an unusable product or a “solution looking

for a problem”.

1/13/2015 www.cac.cornell.edu 49

Software Lifecycle: software design

• Once you know your software requirements, you must design to

meet them

• Design elements include (loose order):

– Framework (including languages, testing/QA, Continuous Integration)

– Architecture

– Software components (including re-use)

– Communication

– Data structures

– Algorithms

1/13/2015 www.cac.cornell.edu 50

But is it comfortable?

Software Lifecycle: software design

• Once you know your software requirements, you must design to

meet them

• Design elements include (loose order):

– Framework (including languages, testing/QA, Continuous Integration)

– Architecture

– Software components (including re-use)

– Communication

– Data structures

– Algorithms

• “Days of programming can save hours of thinking!”

1/13/2015 www.cac.cornell.edu 51

But is it comfortable?

Software Lifecycle: some guidelines

• Your design, if implemented, is a template for the documentation

• Diagrams are very helpful

• Modularity and layering allow abstraction

– simplifies implementation and maintenance

• Design Review is important

• Identify how it satisfies the requirements

– Particularly helpful if requirements change

1/13/2015 www.cac.cornell.edu 52

Software Lifecyle: diagrams visualize flow

1/13/2015 www.cac.cornell.edu 53

Software Lifecycle: diagrams show functionality

1/13/2015 www.cac.cornell.edu 54

Software Lifecycle: some guidelines

• Your design, if implemented, is a template for the documentation

• Diagrams are very helpful

• Modularity and layering allow abstraction

– simplifies implementation and maintenance

• Design Review is important

• Identify how it satisfies the requirements

– Particularly helpful if requirements change

1/13/2015 www.cac.cornell.edu 55

Software Lifecycle: implementation

• Common implementation methodologies today stress:

– Use cases/user stories

– Fast development cycles

– Whole-team awareness

– Prototyping

– Regular meetings

– Mixed expertise

– Integrated testing

1/13/2015 www.cac.cornell.edu 56

Agile!

Software Lifecycle: implementation

• Common implementation methodologies today stress:

– Use cases/user stories

– Fast development cycles

– Whole-team awareness

– Prototyping

– Regular meetings

– Mixed expertise

– Integrated testing

• Sounds a lot like the research environment!

1/13/2015 www.cac.cornell.edu 57

Agile!

Software Lifecycle: coding

• Already covered coding practices but:

• All this stuff fits together!

1/13/2015 www.cac.cornell.edu 58

Software Lifecycle: software estimation

• “The first 90 percent of the code accounts for the first 90 percent of

the development time. The remaining 10 percent of the code

accounts for the other 90 percent of the development time.”

– Tom Cargill’s ninety-ninety rule

• One simple approach:

– Identify all project elements, including testing and documentation!

– Estimate each individually, including a margin of error

– Sum the estimates

• Keep alert to changes in requirements and to progress in timeline.

– Identifying problems early gives more freedom to plan remediation.

 1/13/2015 www.cac.cornell.edu 59

Software Lifecycle: deployment and upgrades

• Software often deployed on machines on which it wasn’t developed

• Developers plan deployment. Typically, on Linux:

– README: gives version information and help for installation

– Configuration Script (typically called configure), optional

• May be written by hand, generated by autoconf, etc

– Build instructions

• Often done with Make

• Languages may have their own tools, eg, maven, ez_install

• Environment virtualization can make this easier

1/13/2015 www.cac.cornell.edu 60

Software Lifecycle: does it work?

• In the research environment, most important elements include:

– Levels

• Unit Tests. Typically written as code is developed, can be executed at build

time

• Interface and interoperability

• System testing: covers the entire product, top to bottom. Tests driven by the

requirements

– Types

• Build testing: will it run where it’s being built?

• Functional tests: tests required functional behavior of components

• Performance testing: does it meet performance requirements? How does

performance scale with load?

• Regression testing: testing that changes/upgrades to the software haven’t

broken anything

• Operational testing: does it work when you run it a lot, with different inputs?

1/13/2015 www.cac.cornell.edu 61

Overview

• Coding practices

– (because most of us are already coding)

• Software Lifecycle

– Cradle to Grave

• Improving the Software

– Faster. Better. Stronger

1/13/2015 www.cac.cornell.edu 62

Improving the Code: making applications better

• Upgrading means integration of new code into existing software

• Modern software development typically does this frequently

– Continuous Integration (CI) involves very frequent integrations into the

main build and, typically, frequent releases

– Automated testing a key element of CI on typical scales

• In HPC, putting out new versions without testing first can waste a lot

of time/money very quickly

– Code should be tested before deployment. This may be a fair amount of

development just towards testing.

1/13/2015 www.cac.cornell.edu 63

It’s never done!

• There are several reasons to change a software product, including:

– Adding features

– Correcting bugs

– Improving performance

– Changing external interfaces

– Changing environment

• Includes infrastructure upgrades like advancing language version

• Managing this process can be similar to Agile development

• Suggestion: use semantic versioning to label releases

– www.semver.org

1/13/2015 www.cac.cornell.edu 64

• Benchmarking

– Forms baseline for performance evaluation

– Used to test performance requirements are met

– Requires documenting the hardware and context

– Can be re-run as supplement to regression testing

• Profiling

– Key component of understanding code performance

– Part of the benchmark

• Optimization will be dealt with in its own talk

Benchmarking and Optimization

1/13/2015 www.cac.cornell.edu 65

This one goes to 11

Summary

• Incorporation of new practices should be needs-based

• You don’t have to do it all at once!

• Think of code as a document, read by humans as well as compilers

• Best practices tend to be intercompatible and mutually supporting

• Try some things out!

1/13/2015 www.cac.cornell.edu 66

