
Programming for Stampede 2 with Python or R

Adam Brazier

Computational Scientist

Cornell University Center for Advanced Computing (CAC)

brazier@cornell.edu

www.cac.cornell.edu

High Performance Computing on Stampede 2, with KNL

mailto:your@cac.cornell.edu

Overview

• Introduction

– Themes, Overview

– Scope

– Resources

– Visualization Portal

• Python

– Compiled code

– Parallelization: MKL/automagic, multiprocessing, MPI

• R

– Parallelization: MKL/automagic, SNOW, RMPISNOW

1/23/2017 www.cac.cornell.edu 2

Themes

• Using the right libraries and interpreters

• Integration with compiled code (in Python)

• Most importantly, parallelization

– Automagic, MKL

– Multicore operations

– MPI

1/23/2017 www.cac.cornell.edu 3

HPC? In a high-level language?

• Both Python and R are used commonly in scientific research,

research which is producing increasing amounts of data

– Data products you are trying to analyze may have been produced on

Stampede

• Necessary data analysis in Python or R may become too slow, or

computers may run out of memory

– Stampede nodes have more cores and more RAM than your laptop

– Re-implementing in C or Fortran may not be feasible or desirable!

• Parallelism can improve performance of many Python/R

applications, even without fine-grained control over what is

happening in the hardware

1/23/2017 www.cac.cornell.edu 4

Scope

• Not an “introduction to programming Python/R” course, but assumes

no particular level of expertise

– Assumes no more Stampede expertise than discussed in preceding

lectures in this workshop

• Two key strands:

– What sort of things can I do to make it run faster/better?

– Basic examples of some technologies that will server many/most

Stampede2 use cases in Python and R

• I will use “Stampede” as the descriptor, because we’ll largely be

running on old Stampede, learning what will work on Stampede-KNL

– I will avoid some techniques which might not work on Stampede-KNL

1/23/2017 www.cac.cornell.edu 5

For this workshop

• We will be using:

– Standard Stampede logins, so ssh to stampede.tacc.utexas.edu

– Allocation: : TG-TRA140011

– Reservation: CAC1

– Queue (if needed): normal-mic

– Scripts are under R_Python_Workshop

• /python_scripts

• /R_scripts

– One correction: one file in R_Python_Workshop/Rscripts needs to be

replaced; you can get the corrected version at:
~tg459572/LABS/labsJan2017/R_Python_Workshop/R_scripts/Run_SimpleSNOW.sh

1/23/2017 www.cac.cornell.edu 6

Other resources

• All of the Python and R functions and libraries used are documented

on the official Python and R documentation (or via CRAN, for R)

• All of the examples in this talk are from the Cornell Virtual

Workshops Python for High Performance and An Introduction to R

on XSEDE resources, which contain additional information to that

covered here.

• Stampede documentation on the TACC portal contains some good

information, and a search engine query of something like “TACC

Stampede HPC [R/Python]” works pretty well for finding material.

– Eg, David Walling’s presentation on “High Performance R”

1/23/2017 www.cac.cornell.edu 7

https://cvw.cac.cornell.edu/python/default
https://cvw.cac.cornell.edu/R/
https://www.tacc.utexas.edu/documents/13601/901835/Parallel_R_Final.pdf

Visualization portal
• http://vis.tacc.utexas.edu

1/23/2017 www.cac.cornell.edu 8

http://vis.tacc.utexas.edu/

Access through the Visualization Portal

• Gives access to one compute node.

• Shows current utilization on chosen resource.

• OMP_NUM_THREADS may not be set, should default to number of

cores, and MKL should be able to use multithreading automatically.

However, you can set it by calling a shell or setting system

environment variables in code

• Visualization portal has Jupyter (allowing Python and R), R Studio

and VNC. Typically asks for four hours but session can be

terminated earlier. Choice of queues, should typically use “vis”.

1/23/2017 www.cac.cornell.edu 9

Python

• Python very popular in the sciences

• Examples here use Python 2.7 but much of it works the same in

Python 3 (however, no mpi4py in Python 3 on Stampede)

• We aren’t covering “writing good code”, but of course, writing good

code is desirable if good performance is required

• We will use console submission of jobs, but Jupyter (fkas iPython) is

available on the Visualization Portal

• Exploiting Stampede compute node capabilities requires

parallelisation
1/23/2017 www.cac.cornell.edu 10

You can run C/FORTRAN from Python

• Several ways to call code in a lower-level language from Python:

– SWIG: create Python-callable libraries, from code written in C/C++

– F2PY: allows calling Fortran (mostly F77) code from Python

– Cython: generates compiled code from Python, callable from Python

– Write your own C to call from Python!

– Use subprocess to call compiled C code as if from command-line

1/23/2017 www.cac.cornell.edu 11

Use the right packages/modules!

• If your software is built against the Intel Math Kernel Library (MKL)

• In particular, using the Numpy and Scipy provided by TACC will

result in optimized calls to LAPACK and BLAS

• You get these with:

$ module load python

$ module load python3*

• first, type $ module spider python3 to get instructions on other

required modules

* But not for MPI jobs!

1/23/2017 www.cac.cornell.edu 12

Multiple processes I—threading is still sequential

• Python has a threading module, which seems promising…

1/23/2017 www.cac.cornell.edu 13

Multiple processes I—threading is still sequential

• Python has a threading module, which seems promising…

• But it produces sequential code. From the python documentation:

– In CPython, due to the Global Interpreter Lock, only one thread can

execute Python code at once (even though certain performance-

oriented libraries might overcome this limitation). If you want your

application to make better use of the computational resources of multi-

core machines, you are advised to use multiprocessing or

concurrent.futures.ProcessPoolExecutor. However, threading is still an

appropriate model if you want to run multiple I/O-bound tasks

simultaneously.

• This isn’t what we normally want (unless we are I/O-bound, or need

large amounts of RAM so that additional processes aren’t viable)

1/23/2017 www.cac.cornell.edu 14

Multiple processes I—threading is still sequential

• Python has a threading module, which seems promising…

• But it still produces sequential code:

– In CPython, due to the Global Interpreter Lock, only one thread can

execute Python code at once (even though certain performance-

oriented libraries might overcome this limitation). If you want your

application to make better use of the computational resources of multi-

core machines, you are advised to use multiprocessing or

concurrent.futures.ProcessPoolExecutor. However, threading is still an

appropriate model if you want to run multiple I/O-bound tasks

simultaneously.

• This isn’t what we normally want (unless we are I/O-bound, or need

large amounts of RAM so that additional processes aren’t viable)

1/23/2017 www.cac.cornell.edu 15

Multiple processes—the multiprocessing package

• We can use the multiprocessing package

• multiprocessing creates separate processes which run in

parallel and offers a similar API to the threading package

• Creating a process does have some extra overhead, but if the

process runs long enough it’s worth it

– You create a pool of processes to which you then assign a function

– Not as fast as a genuine threaded environment as inter-process

communication slower than inter-thread communication, but

performance benefits can still be considerable

1/23/2017 www.cac.cornell.edu 16

Lab 1: Multiprocess example

• python_multiprocessing.py

1/23/2017 www.cac.cornell.edu 17

from multiprocessing import Pool

def f(x):

return x*x

p = Pool(4) # starts 4 worker processes

print(p.map(f, range(10))) # prints [0, 1, 4,..., 81]

Lab 1: Multiprocess example

• python_multiprocessing.py

1/23/2017 www.cac.cornell.edu 18

from multiprocessing import Pool

def f(x):

return x*x

p = Pool(4) # starts 4 worker processes

print(p.map(f, range(10))) # prints [0, 1, 4,..., 81]

Importing Pool to let us

create processes

Lab 1: Multiprocess example

• python_multiprocessing.py

1/23/2017 www.cac.cornell.edu 19

from multiprocessing import Pool

def f(x):

return x*x

p = Pool(4) # starts 4 worker processes

print(p.map(f, range(10))) # prints [0, 1, 4,..., 81]

Defining the function we’re going

to run in our processes

Lab 1: Multiprocess example

• python_multiprocessing.py

1/23/2017 www.cac.cornell.edu 20

from multiprocessing import Pool

def f(x):

return x*x

p = Pool(4) # starts 4 worker processes

print(p.map(f, range(10))) # prints [0, 1, 4,..., 81]

Lab 1: Multiprocess example

• python_multiprocessing.py

1/23/2017 www.cac.cornell.edu 21

from multiprocessing import Pool

def f(x):

return x*x

p = Pool(4) # starts 4 worker processes

print(p.map(f, range(10))) # prints [0, 1, 4,..., 81]

Chunks up and sends the iterable,
range(10), to the pooled processes

and prints their output; like the built-in
map() function but only takes one

iterable

Lab 1: Multiprocess example

• python_multiprocessing.py

1/23/2017 www.cac.cornell.edu 22

from multiprocessing import Pool

def f(x):

return x*x

p = Pool(4) # starts 4 worker processes

print(p.map(f, range(10))) # prints [0, 1, 4,..., 81]

Run in an interactive session:

$ idev –r

$ module load python

$ python python_multiprocessing.py

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Python and MPI

• The mpi4py package allows us to run MPI Python, across nodes

• mpi4py initializes MPI when imported and contains all the standard

MPI calls

• mpi4py is already present on Stampede in Python 2.7

• For production code, exchange data as numpy arrays (see Cornell

Virtual Workshop “Python for High Performance” for an example)

1/23/2017 www.cac.cornell.edu 23

Python and MPI

• mpi_python.mpi

1/23/2017 www.cac.cornell.edu 24

from mpi4py import MPI

import socket

comm = MPI.COMM_WORLD

print "Hello! I am rank %02d from %02d on host %s \n"

% (comm.rank , comm.size , socket.gethostname())

Lab 2: mpi4py

• mpi_python.mpi

1/23/2017 www.cac.cornell.edu 25

from mpi4py import MPI

import socket

comm = MPI.COMM_WORLD

print "Hello! I am rank %02d from %02d on host %s \n"

% (comm.rank , comm.size , socket.gethostname())

Imports the MPI functionality, and also

socket for our “here I am” test

Lab 2: mpi4py

• mpi_python.mpi

1/23/2017 www.cac.cornell.edu 26

from mpi4py import MPI

import socket

comm = MPI.COMM_WORLD

print "Hello! I am rank %02d from %02d on host %s \n"

% (comm.rank , comm.size , socket.gethostname())

Creates intracommunicator instance

Lab 2: mpi4py

• mpi_python.mpi

1/23/2017 www.cac.cornell.edu 27

from mpi4py import MPI

import socket

comm = MPI.COMM_WORLD

print "Hello! I am rank %02d from %02d on host %s \n"

% (comm.rank , comm.size , socket.gethostname())

Each process reports back

Lab 2: mpi4py

• mpi_python.mpi

1/23/2017 www.cac.cornell.edu 28

from mpi4py import MPI

import socket

comm = MPI.COMM_WORLD

print "Hello! I am rank %02d from %02d on host %s \n"

% (comm.rank , comm.size , socket.gethostname())

$ idev –N 2 –n 24

$ module load python

$ ibrun python mpi_python.mpi

Hello! I am rank 09 from 24 on host c557-303.stampede.tacc.utexas.edu

Hello! I am rank 00 from 24 on host c557-303.stampede.tacc.utexas.edu

…

R on Stampede 2: basics

• Don’t run R Scripts on login nodes!

• Do use:

module load Rstats

– Note that module load R also works, but you don’t get the optimized

builds that way.

• Options for R include:

– sbatch for traditional batch

– idev for interactive sessions on compute notes

– RDesktop on the visualization portal

1/23/2017 www.cac.cornell.edu 29

R on Stampede 2: basics

• Don’t run R Scripts on login nodes!

• Do use:

module load Rstats

– Note that module load R also works, but you don’t get the optimized

builds that way.

• Options for R include:

– sbatch for traditional batch

– idev for interactive sessions on compute notes

– RDesktop on the visualization portal We will be using this

1/23/2017 www.cac.cornell.edu 30

R on Stampede 2: basics

• Don’t run R Scripts on login nodes!

• Do use:

module load Rstats

– Note that module load R also works, but you don’t get the optimized

builds that way.

• Options for R include:

– sbatch for traditional batch

– idev for interactive sessions on compute notes

– RDesktop on the visualization portal

1/23/2017 www.cac.cornell.edu 31

But also using console

The bare-bones environment

1/23/2017 www.cac.cornell.edu 32

Rstats?

• Includes a TACC-maintained optimized build of R

• Compiled with Intel compilers and linked against MKL math library

• We already told you this, but on Stampede, make sure you module

load Rstats because although module load R also works on

Stampede, you don’t want to use that.

• Much of what you already know about Stampede, including batch

and interactive jobs, is relevant to R on Stampede.

1/23/2017 www.cac.cornell.edu 33

Multicore operations: the secret sauce

• R is, by default, single-threaded (as is the case with Python)

• On Stampede-KNL, as you have learnt, all the performance benefits

come from running on multiple cores

• How to run on multiple cores in R?

– The version of R built with MKL will give you automatic multithreading

based on library heuristics, as we discussed for Python, earlier. The R

Studio on the Vis portal also gives you this

– You can use packages which have parallelism built in

– You can use SNOW/RMPI

– You can use Snowfall

1/23/2017 www.cac.cornell.edu 34

Multicore operations: the secret sauce

• R is, by default, single-threaded

• On Stampede-KNL, as you have learnt, all the performance benefits

come from running on multiple cores

• How to run on multiple cores in R?

– The version of R built with MKL will give you automatic multithreading

based on library heuristics, as we discussed for Python, earlier. The R

Studio on the Vis portal also gives you this

– You can use packages which have parallelism built in

– You can use SNOW/RMPI

– You can use Snowfall

1/23/2017 www.cac.cornell.edu 35

IMPORTANT!

Use the right package: multicore

• The multicore package contains functions for parallel execution,

where all spawned processes share the full state of R at spawning

• Configurable value for cores but defaults to all the available cores.

• A key function is mclapply, a multicore version of lapply

• parallel and collect are used to spawn processes and collect

results

1/23/2017 www.cac.cornell.edu 36

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 37

Login here

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 38

Important

selections

highlighted

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 39

Start it up! (you

will use the

terminate button

later)

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 40

Login again!

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 41

You are now

on a compute

node

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 42

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 43

OMP_NUM_THREADS

is not set. You could set

it here in shell

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 44

Call up

parallel

library,

check

number of

cores

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 45

Benchmar

k, single-

core lapply

generating

normally

distributed

variables

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 46

Use

mclappy,

try

different

numbers

of cores

Details

1/23/2017 www.cac.cornell.edu 47

> library(parallel)

> system.time(lapply(1:3000, rnorm))

user system elapsed

0.713 0.012 0.725

> system.time(mclapply(1:3000, rnorm, mc.cores=14))

user system elapsed

0.145 0.082 0.252

> system.time(mclapply(1:3000, rnorm, mc.cores=16))

user system elapsed

0.072 0.082 0.173

Call up parallel library,

check number of cores

Details

1/23/2017 www.cac.cornell.edu 48

> library(parallel)

> system.time(lapply(1:3000, rnorm))

user system elapsed

0.713 0.012 0.725

> system.time(mclapply(1:3000, rnorm, mc.cores=14))

user system elapsed

0.145 0.082 0.252

> system.time(mclapply(1:3000, rnorm, mc.cores=16))

user system elapsed

0.072 0.082 0.173

Benchmark, single-core

lapply generating

normally distributed

variables

Details

1/23/2017 www.cac.cornell.edu 49

> library(parallel)

> system.time(lapply(1:3000, rnorm))

user system elapsed

0.713 0.012 0.725

> system.time(mclapply(1:3000, rnorm, mc.cores=14))

user system elapsed

0.145 0.082 0.252

> system.time(mclapply(1:3000, rnorm, mc.cores=16))

user system elapsed

0.072 0.082 0.173

Use mclappy, try

different numbers of

cores

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 50

1st: quit

session

2nd: can save

workspace to

your home

directory

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 51

Return to vis

portal page

Lab 3: Rstudio and Multicore

1/23/2017 www.cac.cornell.edu 52

Terminate

Rstudio/job

MPI with SNOW

• SNOW stands for Simple Network of Workstations. For

embarrassingly parallel applications.

• SNOW is built atop RMPI, but you do not need to know MPI to use it

• Has a master/servant model, one master process controls the other

processes, gathers the output and can perform additional

processing

• Can be used on one node (Lab 4) or multiple nodes (Lab 5)

1/23/2017 www.cac.cornell.edu 53

Lab 4: Let it SNOW on one node

• Look at birthday.R: $ less –N birthday.R

1/23/2017 www.cac.cornell.edu 54

1 library(snow)

2

3 nmax = 50

4 nworkers <- as.numeric(Sys.getenv("SLURM_NPROCS"))

5

6 cl <- makeCluster(nworkers, type='SOCK')

7

Set up “cluster”

Lab 4: Let it SNOW on one node

• Look at birthday.R: $ less –N birthday.R

1/23/2017 www.cac.cornell.edu 55

8 pbday <- function(n) {

9 ntests <- 1000

10 pop <- 1:365

11 anydup <- function(i)

12 any(duplicated(sample(pop, n,replace=TRUE)))

13 sum(sapply(seq(ntests), anydup)) / ntests

14 }

15 clusterExport(cl, list('pbday'))

16

17 # print the time to do nmax tests, after

distributing them to the workers

18 system.time(x <- clusterApply(cl, 1:nmax,

function(n) { pbday(n) }) 18)

Lab 4: Let it SNOW on one node

• Look at birthday.R : $ less –N birthday.R

1/23/2017 www.cac.cornell.edu 56

8 pbday <- function(n) {

9 ntests <- 1000

10 pop <- 1:365

11 anydup <- function(i)

12 any(duplicated(sample(pop, n,replace=TRUE)))

13 sum(sapply(seq(ntests), anydup)) / ntests

14 }

15 clusterExport(cl, list('pbday'))

16

17 # print the time to do nmax tests, after

distributing them to the workers

18 system.time(x <- clusterApply(cl, 1:nmax,

function(n) { pbday(n) }) 18)

Experimentally

evaluate

probability of at

least one

shared

birthday given

n people

Lab 4: Let it SNOW on one node

• Look at birthday.R : $ less –N birthday.R

1/23/2017 www.cac.cornell.edu 57

8 pbday <- function(n) {

9 ntests <- 1000

10 pop <- 1:365

11 anydup <- function(i)

12 any(duplicated(sample(pop, n,replace=TRUE)))

13 sum(sapply(seq(ntests), anydup)) / ntests

14 }

15 clusterExport(cl, list('pbday'))

16

17 # print the time to do nmax tests, after

distributing them to the workers

18 system.time(x <- clusterApply(cl, 1:nmax,

function(n) { pbday(n) }) 18)

Export to cluster and print time to

evaluate for values of n from 1 to

nmax, and assign computation

output to x

Lab 4: Let it SNOW on one node

• Look at birthday.R : $ less –N birthday.R

1/23/2017 www.cac.cornell.edu 58

20 # compute the theoretical probability for each n

21 prob <- rep(0.0,nmax)

22 probnot <- 1.0

23 for (i in 2:nmax) {

24 probnot <- probnot*(366.0-i)/365.0

25 prob[i] = 1.0 - probnot

26 }

27

28 # print results, comparing tests to theory

29 z <- cbind(x,prob)

30 print(z)

Calculate theoretical probability

that no birthdays shared, for n up

to nmax

Lab 4: Let it SNOW on one node

• Look at birthday.R : $ less –N birthday.R

1/23/2017 www.cac.cornell.edu 59

20 # compute the theoretical probability for each n

21 prob <- rep(0.0,nmax)

22 probnot <- 1.0

23 for (i in 2:nmax) {

24 probnot <- probnot*(366.0-i)/365.0

25 prob[i] = 1.0 - probnot

26 }

27

28 # print results, comparing tests to theory

29 z <- cbind(x,prob)

30 print(z)

Output the

experimental

versus theoretical

values, for each

test

Lab 4: Let it SNOW on one node

• Now we run birthday.R (note, can use $ Rscript ./birthday.R

if you don’t want to see it line-by-line)

• Look for the runtime output and the displayed results comparing the

two methods.

1/23/2017 www.cac.cornell.edu 60

$ idev

$ module load Rstats

$ R --no-save < ./birthday.R

Lab 5: Let it SNOW on more than one node

• For this, we use RMPISNOW

• Unfortunately, we can’t use the latest Rstats build for this on

Stampede, but our batch script takes care of that.

• We will execute SimpleSNOW.R and call it from

Run_SimpleSNOW.sh

1/23/2017 www.cac.cornell.edu 61

Lab 4: Let it SNOW on more than one node

• Read Run_SimpleSNOW.sh: $ less –N Run_SimpleSNOW.sh

1/23/2017 www.cac.cornell.edu 62

1 #!/bin/bash

2 #SBATCH -A XXXXXXXXXXX

3 #SBATCH -N 2 -n 24

4 #SBATCH -p XXXXXXXXXXX

5 #SBATCH -t 00:10:00

6 #SBATCH -J hello

7 #SBATCH –reservation=XXXXXXXX

8 module purge

9 module load TACC

10 module load intel/14.0.1.106

11 module load Rstats

12

13 echo "say hello"

14 ibrun RMPISNOW < ./SimpleSNOW.R

15 echo "done"

Lab 4: Let it SNOW on more than one node

• Read Run_SimpleSNOW.sh: $ less –N Run_SimpleSNOW.sh

1/23/2017 www.cac.cornell.edu 63

1 #!/bin/bash

2 #SBATCH -A XXXXXXXXXXX

3 #SBATCH -N 2 -n 24

4 #SBATCH -p XXXXXXXXXXX

5 #SBATCH -t 00:10:00

6 #SBATCH -J hello

7 #SBATCH –reservation=XXXXXXXX

8 module purge

9 module load TACC

10 module load intel/14.0.1.106

11 module load Rstats

12

13 echo "say hello"

14 ibrun RMPISNOW < ./SimpleSNOW.R

15 echo "done"

Edit in allocation hereEdit in allocation here

Edit in queue name here

Getting right Rstats build

Send code to nodes

Edit in reservation here (optional)

Lab 4: Let it SNOW on more than one node

• Read SimpleSNOW.R: $ less –N SimpleSNOW.R

1/23/2017 www.cac.cornell.edu 64

2 cluster <- getMPIcluster()

3

4 # Print the hostname for each cluster member

5 sayhello <- function()

6 {

7 info <- Sys.info()[c("nodename", "machine")]

8 paste("Hello from", info[1], "with CPU type", info[2])

9 }

10

11 names <- clusterCall(cluster, sayhello)

12 print(unlist(names))

13

14 # stopCluster will call mpi.finalize, no need for mpi.exit

15 stopCluster(cluster)

Function to execute

Collect output,

flatten and print to

screen

End job, clear up

Lab 4: Let it SNOW on more than one node

• Run the code

• Read the output, in a file something like slurm-XXXXXX.out and

ignore the warnings about .find.package

• Just let it run and look for the output package; open it when it’s

visible

1/23/2017 www.cac.cornell.edu 65

$ sbatch Run_SimpleSNOW.sh

$ less –N slurm-XXXXXX.out

Lab 4: Let it SNOW on more than one node

• Note that only 23 worker processes were used despite our request for

24: this is because it is assumed one process is needed to run it all

1/23/2017 www.cac.cornell.edu 66

$ less –N slurm-XXXXXX.out

137 [1] "Hello from c557-703.stampede.tacc.utexas.edu with CPU type x86_64"

138 [2] "Hello from c557-703.stampede.tacc.utexas.edu with CPU type x86_64"

....

158 [22] "Hello from c557-704.stampede.tacc.utexas.edu with CPU type x86_64"

159 [23] "Hello from c557-704.stampede.tacc.utexas.edu with CPU type x86_64"

160 >

161 > # stopCluster will call mpi.finalize, no need for mpi.exit

162 > stopCluster(cluster)

163 >

164

165 TACC: Shutdown complete. Exiting.

166 done

Snowfall. Rmpi

• “Snowfall” allows n(processes) > n(cores), but only on one

Stampede node

– Example on the Cornell Virtual Workshop “An Introduction to R on

Stampede Resources”

• RMPI and pbdrMPI are also available. Requires more work from the

coder but allows finer-grained control; some helpful advice can be

found on David Walling’s presentation “High Performance R”

1/23/2017 www.cac.cornell.edu 67

https://cvw.cac.cornell.edu/R/default
https://www.tacc.utexas.edu/documents/13601/901835/Parallel_R_Final.pdf

Conclusions

• You need to use multiple cores!

– In ascending difficulty/inconvenience, MKL, multithreading/processes,

MPI

• You need to benchmark to find out how many threads/processes to

run

• Visualization Portal is very good for many purposes (including, but

not limited to, visualization!)

• Demonstrated effort to speed up your code is very helpful/necessary

in getting more Stampede time

1/23/2017 www.cac.cornell.edu 68

