
Vectorization on KNL

Steve Lantz

Senior Research Associate

Cornell University Center for Advanced Computing (CAC)

steve.lantz@cornell.edu

www.cac.cornell.edu

High Performance Computing on Stampede 2, with KNL, Jan. 23, 2017

mailto:steve.lantz@cac.cornell.edu

What is Vectorization?

• Hardware Perspective: Specialized instructions, registers, or

functional units to allow in-core parallelism for operations on arrays

(vectors) of data.

• Compiler Perspective: Determine how and when it is possible to

express computations in terms of vector instructions.

• User Perspective: Determine how to write code in a manner that

allows the compiler to deduce that vectorization is possible.

1/23/2017 www.cac.cornell.edu 2

Vectorization via SIMD: Motivation

• CPU speeds reach a plateau

– Power limitations!

– Many “slow” transistors more efficient than fewer “fast” transistors

• Process improvements make physical space cheap

– Moore’s law, 2x every 18–24 months

– Easy to add more “stuff”

• One solution: more cores

– First dual-core Intel CPUs appeared in 2005

– Counts have grown rapidly, e.g., 8 in Sandy Bridge, 61–72 on Xeon Phi

• Another solution: more FPU units per core – vector operations

– First appeared on a Pentium with MMX in 1996

– Vector widths have ballooned recently, e.g., 512-bit (8 doubles) on MIC

1/23/2017 www.cac.cornell.edu 3

Vectorization: Hardware

• Goal: parallelize computations over vector arrays

• SIMD: Single Instruction Multiple Data

• Many instances of a single operation executing simultaneously

– Late ‘90s – present, commodity CPUs (x86, x64, PowerPC, etc.)

– Small vectors, few cycles per instruction

– Newer CPUs (since Sandy Bridge) can pipeline some SIMD instructions

as well – best of both worlds

• KNL has two VPUs per core, both of which can execute an add and

a multiply operation every cycle (FMA = Fused Multiply-Add)

1/23/2017 www.cac.cornell.edu 4

Evolution of Vector Registers and Instructions

• Core has 16 (SSE, AVX) or 32 (AVX-512) separate vector registers

• In 1 cycle, both ADD and MUL units can do operations with registers

1/23/2017 www.cac.cornell.edu 5

8

16

zmm0

AVX-512 (KNL, 2016; prototyped by KNC, 2013)

4

8

ymm0

AVX, 256-bit (2011)

2

4

xmm0

SSE, 128-bit (1999)
64-bit double

32-bit float

Speed

• True SIMD parallelism – Can take 1 cycle per floating point

computation on all values in a vector register.

– Exception: Slow operations like division, square roots

• Speedup (compared to no vector) proportional to vector width

– 128-bit SSE – 2x double, 4x single

– 256-bit AVX – 4x double, 8x single

– 512-bit MIC – 8x double, 16x single

• Hypothetical AVX example: 8 cores/CPU * 4 doubles/vector * 2.0

GHz = 64 Gflops/CPU DP

• Gets even better with FMA (Fused Multiply Add), a=a+(b*c);

multiply and add in the same clock cycle (Haswell+, Xeon Phi)

1/23/2017 www.cac.cornell.edu 6

Speed

• Clearly memory bandwidth is potential issue, we’ll explore this later

– Poor cache utilization, alignment, memory latency all detract from ideal

• SIMD is parallel, so Amdahl’s law is in effect!

– Serial/scalar portions of code or CPU are limiting factors

– Theoretical speedup is only a ceiling

1/23/2017 www.cac.cornell.edu 7

0

2

4

6

8

1 2 4 8 16

30%

60%

90%

Vector width

S
p
e
e
d
u
p

% vectorization

User Perspective

Let’s take a step back – how can we leverage this power

• Program the key routines in assembly

– Ultimate performance potential, but only for the brave

• Program the key routines using intrinsics

– Step up from assembly, useful but risky

• Let the compiler figure it out

– Relatively “easy” for user, “challenging” for compiler

– Less expressive languages like C make compiler’s job more difficult

– Compiler may need some guidance

• Link to an optimized library that does the actual work

– e.g. Intel MKL, written by people who know all the tricks

– Get benefits “for free” when running on supported platform

1/23/2017 www.cac.cornell.edu 8

Vector-Aware Coding

• Know what makes codes vectorizable at all

– “for” loops (in C) or “do” loops (in fortran) that meet certain constraints

• Know where vectorization will help

• Evaluate compiler output

– Is it really vectorizing where you think it should?

• Evaluate execution performance

– Compare to theoretical speedup

• Know data access patterns to maximize efficiency

• Implement fixes: directives, compilation flags, and code changes

– Remove constructs that make vectorization impossible/impractical

– Encourage/force vectorization when compiler doesn’t, but should

– Better memory access patterns

1/23/2017 www.cac.cornell.edu 9

Writing Vectorizable Loops

Basic requirements of vectorizable loops:

• Countable at runtime

– Number of loop iterations is known before loop executes

– No conditional termination (break statements)

• Have single control flow

– No switch statements

– ‘if’ statements are allowable when implemented as masked assignments

• Must be the innermost loop if nested

– Note, the compiler may reverse loop order as an optimization!

• No function calls

– Basic math is allowed: pow(), sqrt(), sin(), etc

– Some inline functions allowed

1/23/2017 www.cac.cornell.edu 10

Conceptualizing Compiler Vectorization

• Think of vectorization in terms of loop unrolling

– Unroll N interactions of loop, where N elements of data array fit into

vector register

1/23/2017 www.cac.cornell.edu 11

for (i=0; i<N; i++) {

 a[i]=b[i]+c[i];

}

for (i=0; i<N; i+=4) {

 a[i+0]=b[i+0]+c[i+0];

 a[i+1]=b[i+1]+c[i+1];

 a[i+2]=b[i+2]+c[i+2];

 a[i+3]=b[i+3]+c[i+3];

}

Load b(i..i+3)

Load c(i..i+3)

Operate b+c->a

Store a

Compiling Vector loops

• Intel Compiler:

– Vectorization starts at optimization level -O2

– Will default to SSE instructions and 128-bit vector width

– Use -xAVX to use AVX and 256-bit vector width

– Embed SSE and AVX instructions in the same binary with –axAVX

– Use –xMIC-AVX512 for KNL

– Get a vectorization report (in .optrpt file) with -qopt-report=<n>

• GCC 4.9 or higher:

– Auto-vectorization is generally enabled at –O3 optimization level

– Previously needed –ftree-vectorize flag and optimization > –O2

– For Xeon Phi: -mavx512f -mavx512cd -mavx512er -mavx512pf

– Vectorization reports: -fopt-info-vec -fopt-info-vec-missed

1/23/2017 www.cac.cornell.edu 12

Vectorization Lab

1. Compile vector.c as a native MIC application:

icc -qopenmp -O3 -xMIC-AVX512 ./vector.c -o vec

2. And also as a MIC application but disabling vectorization:

icc -qopenmp -O3 -xMIC-AVX512 -no-vec ./vector.c -o novec

3. Run both executables and take note of the timing difference. How

much speedup comes from the vectorization?

4. Does this make sense given what you have learned about the KNL

architecture?

1/23/2017 www.cac.cornell.edu 13

Optimization Reports

Let’s get some information about vectorization in this example code.

Compile the code again, but add a basic optimization report option to

the compilation line:

icc -qopenmp -O3 -xMIC-AVX512 -qopt-report=2 ./vector.c \

-o vec

This will generate a report file called vector.optrpt

Open the optimization report file with your favorite text editor, or simply

cat the contents to screen:

cat ./vector.optrpt

1/23/2017 www.cac.cornell.edu 14

There is a lot of information in the optimization report file. We find out

that our array initialization can’t be vectorized because we call an

external function (RAND) in lines 34 and 35 or the example:

LOOP BEGIN at ./vector.c(34,2)

 remark #15527: loop was not vectorized: function call to rand(void)

 cannot be vectorized [./vector.c(34,33)]

LOOP END

LOOP BEGIN at ./vector.c(35,2)

 remark #15527: loop was not vectorized: function call to rand(void)

 cannot be vectorized [./vector.c(35,33)]

But the main loop has been vectorized:

LOOP BEGIN at ./vector.c(45,3)

 remark #15300: LOOP WAS VECTORIZED

Optimization Report: What Vectorized, What Didn’t

1/23/2017 www.cac.cornell.edu 15

Try a higher reporting level, -qoptrpt=4, in order to find out more about

the quality of the main loop vectorization:

LOOP BEGIN at ./vector.c(45,3)

 ...

 remark #15305: vectorization support: vector length 8

 remark #15399: vectorization support: unroll factor set to 8

 remark #15300: LOOP WAS VECTORIZED

 remark #15448: unmasked aligned unit stride loads: 2

 remark #15449: unmasked aligned unit stride stores: 1

 remark #15475: --- begin vector loop cost summary ---

 remark #15476: scalar loop cost: 8

 remark #15477: vector loop cost: 0.620

 remark #15478: estimated potential speedup: 12.800

 remark #15488: --- end vector loop cost summary ---

 remark #25015: Estimate of max trip count of loop=4

Optimization Report: More Detail

1/23/2017 www.cac.cornell.edu 16

Challenge: Loop Dependencies

• Vectorization changes the order of computation compared to

sequential case

• Compiler must be able to prove that vectorization will produce

correct result

• Need to consider independence of unrolled loop operations –

depends on vector width

• Compiler performs dependency analysis

1/23/2017 www.cac.cornell.edu 17

Loop Dependencies: Read After Write

Consider the loop:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying each operation sequentially:

a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13

a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

1/23/2017 www.cac.cornell.edu 18

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

Loop Dependencies: Read After Write

Consider the loop:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying each operation sequentially:

a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13

a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

1/23/2017 www.cac.cornell.edu 19

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

Loop Dependencies: Read After Write

Now let’s try vector operations:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:

a[i-1] = {0,1,2,3} (load)

b[i] = {6,7,8,9} (load)

{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12} (operate)

a[i] = {6, 8, 10, 12} (store)

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30} NOT VECTORIZABLE

1/23/2017 www.cac.cornell.edu 20

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

Loop Dependencies: Write after Read

Consider the loop:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying each operation sequentially:

a[0] = a[1] + b[0] → a[0] = 1 + 5 → a[0] = 6

a[1] = a[2] + b[1] → a[1] = 2 + 6 → a[1] = 8

a[2] = a[3] + b[2] → a[2] = 3 + 7 → a[2] = 10

a[3] = a[4] + b[3] → a[3] = 4 + 8 → a[3] = 12

a = {6, 8, 10, 12 , 4}

1/23/2017 www.cac.cornell.edu 21

for(i=0; i<N; i++)

 a[i] = a[i+1] + b[i];

Loop Dependencies: Write after Read

Now let’s try vector operations:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:

a[i+1] = {1,2,3,4} (load)

b[i] = {5,6,7,8} (load)

{1,2,3,4} + {5,6,7,8} = {6, 8, 10, 12} (operate)

a[i] = {6, 8, 10, 12} (store)

a = {0, 6, 8, 10, 12} = {0, 6, 8, 10, 12} VECTORIZABLE

1/23/2017 www.cac.cornell.edu 22

for(i=0; i<N; i++)

 a[i] = a[i+1] + b[i];

Loop Dependencies: Summary

• Read After Write

– Also called “flow” dependency

– Variable written first, then read

– Not vectorizable

• Write after Read

– Also called “anti” dependency

– Variable read first, then written

– vectorizable

1/23/2017 www.cac.cornell.edu 23

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

for(i=0; i<N-1; i++)

 a[i] = a[i+1] + b[i];

Loop Dependencies: Summary

• Read after Read

– Not really a dependency

– Vectorizable

• Write after Write

– a.k.a “output” dependency

– Variable written, then re-written

– Not vectorizable

1/23/2017 www.cac.cornell.edu 24

for(i=0; i<N; i++)

 a[i] = b[i%2] + c[i];

for(i=0; i<N; i++)

 a[i%2] = b[i] + c[i];

Loop Dependencies: Aliasing

• In C, pointers can hide data dependencies!

– Memory regions they point to may overlap

• Is this vectorizable?

– …Not if we give it the arguments compute(a, a+1, c);

– Effectively, b is really a[i-1] → Read after Write dependency

• Compilers can usually cope, at some cost to performance

1/23/2017 www.cac.cornell.edu 25

void compute(double *a,

 double *b, double *c) {

 for (i=1; i<N; i++) {

 a[i]=b[i]+c[i];

 }

}

Vectorization Reports

• Shows which loops are or are not vectorized, and why

• Intel: -vec-report=<n>

– 0: None

– 1: Lists vectorized loops

– 2: Lists loops not vectorized, with explanation

– 3: Outputs additional dependency information

– 4: Lists loops not vectorized, without explanation

– 5: Lists loops not vectorized, with dependency information

• Reports are essential for determining where the compiler finds a

dependency

• Compiler is conservative, you need to go back and verify that there

really is a dependency.

1/23/2017 www.cac.cornell.edu 26

Loop Dependencies: Vectorization Hints

• Compiler must prove there is no data dependency that will affect

correctness of result

• Sometimes, this is impossible

– e.g. unknown index offset, complicated use of pointers

• Intel compiler solution: IVDEP (Ignore Vector DEPendencies) hint.

– Tells compiler “Assume there are no dependencies”

1/23/2017 www.cac.cornell.edu 27

subroutine

vec1(s1,M,N,x)

…

!DEC$ IVDEP

do i = 1,N

 x(i) = x(i+M) + s1

end do

void vec1(double s1,int M,

 int N,double *x) {

…

#pragma ivdep

for(i=0;i<N;i++) x[i]=x[i+M]+s1;

Compiler Hints Affecting Vectorization

• For Intel compiler only

• Affect whether loop is vectorized or not

• #pragma ivdep

– Assume no dependencies.

– Compiler may vectorize loops that it would otherwise think are not

vectorizable

• #pragma vector always, #pragma simd

– Always vectorize if technically possible to do so.

– Overrides compiler’s decision to not vectorize based upon cost

• #pragma novector

– Do not vectorize

1/23/2017 www.cac.cornell.edu 28

Loop Dependencies: Language Constructs

• C99 introduced ‘restrict’ keyword to language

– Instructs compiler to assume addresses will not overlap, ever

• May need compiler flags to use, e.g. –restrict, -std=c99

1/23/2017 www.cac.cornell.edu 29

void compute(double * restrict a,

 double * restrict b, double * restrict c) {

 for (i=1; i<N; i++) {

 a[i]=b[i]+c[i];

 }

}

Cache and Alignment

 ymm2 ymm0 ymm1

• Optimal vectorization requires concerns beyond SIMD unit!

– Registers: Alignment of data on 16-, 32-, or 64-byte boundaries

– Cache: Cache is fast, memory is slow

– Memory: Sequential access much faster than random/strided

1/23/2017 www.cac.cornell.edu 30





































































































nnn y

y

y

y

x

x

x

x

a

z

z

z

z



3

2

1

3

2

1

3

2

1

*

x1, x2, x3, … xn

Cache

y1, y2, y3, … yn a

z1, z2, z3, … zn

Strided Access

• Fastest usage pattern is “stride 1”: perfectly sequential

• Best performance when CPU can load L1 cache from memory in

bulk, sequential manner

• Stride 1 constructs:

– Iterating structs of arrays vs. arrays of structs

– Multi dimensional array:

• Fortran: stride 1 on “inner” dimension

• C/C++: Stride 1 on “outer” dimension

1/23/2017 www.cac.cornell.edu 31

do j = 1,n; do i=1,n

 a(i,j)=b(i,j)*s

enddo; enddo

for(j=0;j<n;j++)

for(i=0;i<n;i++)

 a[j][i]=b[j][i]*s;

Strided Access

• Striding through memory

reduces effective memory

bandwidth!

– For DP, roughly 1-stride/8

• Worse than non-aligned

access. Lots of memory

operations to populate a

cache line, vector register

1/23/2017 www.cac.cornell.edu 32

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8T
im

e
 (

G
ig

a
 C

lo
c
k
 P

e
ri

o
d

s
)

Stride

Cost of
Memory-Strided Summation

do i = 1,4000000*istride, istride

 a(i) = b(i) + c(i) * sfactor

enddo

Diagnosing Cache and Memory Deficiencies

• Obviously bad stride patterns may prevent vectorization at all:

– In vector report: “vectorization possible but seems inefficient”

• Otherwise, may be difficult to detect

– No obvious assembly instructions, other than a proliferation of loads and

stores

– Vectorization performance farther away from ideal than expected

• Profiling tools can help

– Intel VTune, PerfExpert (available at TACC)

– Visualize CPU cycles wasted in data access (L1 cache miss, TLB

misses, etc.)

• Intel Advisor can make recommendations for you based on your

source code

1/23/2017 www.cac.cornell.edu 33

Conclusion

• Vectorization occurs in tight loops “automatically” by the compiler

• Need to know where vectorization should occur, and verify that

compiler is doing that.

• Need to know if a compiler’s failure to vectorize is legitimate

– Fix code if so, use #pragma if not

• Need to be aware of caching and data access issues

– Very fast vector units need to be well fed

1/23/2017 www.cac.cornell.edu 34

