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Overview         Outline 

• Heterogeneous Parallel Computing 

• Stampede and NVIDIA K20 GPU 

• Programming Structure 

• Thread Hierarchy 

• Memory Model 

• Performance Topics 
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Overview         Terminology 

• GPU  – Graphics Processing Unit 

• CUDA  – Compute Unified Device Architecture 

• Manycore 

• Multicore 

• SM  – Stream Multiprocessor 

• SIMD – Single Instruction Multiple Data 

• SIMT – Single Instruction Multiple Threads 
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Overview  

What is CUDA? 

• Compute Unified Device Architecture 

– Manycore and shared-memory programming model 

– An Application Programming Interface (API) 

– General-purpose computing on GPU (GPGPU) 

 

• Multicore vs Manycore 

– Multicore – Small number of sophisticated cores 

– Manycore – Large number of weaker cores 
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Overview  

• Why CUDA? 

– High level 

• C/C++/Fortran language extensions 

– Scalability 

– Thread-level abstraction 

– Runtime library 

– Thrust parallel algorithm library 

 

• Limitations 

– Not vendor neutral:  NVIDIA CUDA-enabled GPUs only 

• Alternative: OpenCL 

 

 This course will be in C 

http://docs.nvidia.com/cuda/thrust/
http://www.khronos.org/opencl/
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Overview       

Why are we using GPU? 

• Parallel and multithread hardware design 

• Floating point computation 

• Graphic rendering 

• General-purpose computing 

• Energy Efficiency 

• More FLOPS per Watt than CPU 

 

• MIC vs GPU 

• Comparable performance 

• Different programming models 



Overview 
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Overview      Heterogeneous Parallel Computing 

Different designs for different purposes 

• CPU: Fast serial processing 

– Large on-chip cache, to minimize read/write latency 

– Sophisticated logic control 

• GPU: High computational throughputs 

– Large number of cores 

– High memory bandwidth 
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Overview      Heterogeneous Parallel Computing 

Sandy Bridge 

E5 - 2680 

NVIDIA Tesla 

K20 

Processing Units 8 13 SMs, each with 192 

cores, 2496 cores total 

Clock Speed (GHz) 2.7 0.706 

Maximum Threads 8 cores, 2 threads each = 16 

threads 

13 SMs, each with 192 

cores, 32 way SIMD = 79872 

threads 

Memory Bandwidth 51.6 GB/s 205 GB/s 

L1 Cache Size 64 KB/core 64 KB/SMs 

L2 Cache Size 256 KB/core 768 KB, shared 

L3 Cache Size 20MB N/A 

SM = Stream Multiprocessor 
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Overview      SIMD 

• SISD: Single Instruction Single Data 

• SIMD: Single Instruction Multiple Data 

– A vector instruction that perform the same operation on multiple data 

simultaneously 

 

• SIMD Instruction Sets: 

– MMX 
• Multimedia eXtension 

– SSE 
• Streaming SIMD Extensions 

– AVX 
• Advanced Vector Extensions 



Overview      CUDA on Stampede 
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• 6400+ compute nodes, each has: 

– 2 Sandy Bridge processors (E5-

2680) 

– 1 Xeon Phi Coprocessor (MIC) 

 

• There are 128 GPU nodes, each is 

augmented with1 NVIDIA K20 GPU 

 

• Login nodes do not have GPU cards 

installed! 



Overview      CUDA on Stampede 
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Running your GPU application on Stampede: 

 

• Load CUDA software using the module utility 

 

• Compile your code using the NVIDIA nvcc compiler 

– Acts like a wrapper, hiding the intrinsic compilation details for GPU code 

 

• Submit your job to a GPU queue 



Basics         Lab 1: Querying Device 
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1.    Extract the lab files to the home directory 

$ module load cuda 

 

2.    Load the CUDA software  

$ cd $HOME 

$ tar xvf  ~tg459572/LABS/Intro_CUDA.tar  



Basics      Lab 1: Querying Device 
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$ nvcc -arch=sm_30 devicequery.cu  -o devicequery 

3.    Go to lab 1 directory, devicequery 

$ cd Intro_CUDA/devicequery 

• There are 2 files: 

– Source code: devicequery.cu  

– Batch script: batch.sh 

4.    Use NVIDIA nvcc compiler, to compile the source code 



Basics      Lab 1: Querying Device 
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5.    Job submission: 

– Running 1 task on 1 node: #SBATCH -n 1  

– GPU development queue: #SBATCH -p gpudev  

 

 
$ sbatch batch.sh 

$ more gpu_query.o[job ID] 

Queue Name Time Limit Description 

gpu 24 hrs GPU queue 

gpudev 4 hrs GPU development 

node 

vis 8 hrs GPU nodes + VNC 

service  



Basics      Lab 1: Querying Device 
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CUDA Device Query... 

There are 1 CUDA devices. 

 

CUDA Device #0 

Major revision number:          3 

Minor revision number:          5 

Name:                           Tesla K20m 

Total global memory:            5032706048  

Total shared memory per block:  49152 

Total registers per block:      65536 

Warp size:                      32 

Maximum memory pitch:           2147483647 

Maximum threads per block:      1024 

Maximum dimension 0 of block:  1024 

Maximum dimension 1 of block:  1024 

Maximum dimension 2 of block:  64 

Maximum dimension 0 of grid:    2147483647 

Maximum dimension 1 of grid:    65535 

Maximum dimension 2 of grid:    65535 

Clock rate:                     705500 

Total constant memory:          65536 

Texture alignment:              512 

Concurrent copy and execution: Yes 

Number of multiprocessors:      13 

Kernel execution timeout:       No 
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Basics      Programming Structure 



• Host Code 

– Your CPU codes 

– Takes care of: 

• Device memory 

• Kernel invocation  

 

 

 

• Kernel Code 

– Your GPU code 

– Executed on the device 

– __global__ qualifier 

• Must have return type void 
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int main() { 

 … 

 //CPU code 

 [Invoke GPU functions] 

 … 

} 

__global___ 

void gpufunc(arg1, arg2, …){ 

 … 

 //GPU code 

 … 

} 

Basics      Programming Structure 



• Function Type Qualifiers in CUDA 

__global__  

• Callable from the host only 

• Executed on the device 

• void return type 

__device__ 

• Executed on the device only 

• Callable from the device only 

__host__ 

• Executed on the host only 

• Callable from the host only 

• Equivalent to declare a function without any qualifier 

• There are variable type qualifiers available 

• Visit the NVIDIA documentation for detail information 
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Basics      Programming Structure 

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


• Kernel is invoked from the host 

 

 

 

 

 

• Calling a kernel uses familiar syntax (function/subroutine call) 

augmented by Chevron syntax 

• The Chevron syntax (<<<…>>>) configures the kernel 

– First argument: How many blocks in a grid 

– Second argument: How many threads in a block 

 

 

 

 

6/17/2013 www.cac.cornell.edu 20 

int main() { 

 … 

 //Kernel Invocation 

 gpufunc<<<gridConfig, 

blkConfig>>>(arguments…) 

 … 

} 

Basics      Programming Structure 



Thread      Thread Hierarchies 

• Thread 

 

• Block 

– Assigned to a SM 

– Independent 

– Threads within a block can: 

• Synchronize  

• Share data 

• communicate 

– On K20: 1024 threads per block (max) 

• Grid 

– Invoked kernel 
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Thread      Keywords 

• Threads and blocks have its unique ID 

– Thread: threadIdx 

– Block: blockIdx 

• threadIdx can have maximum 3 dimensions 

– threadIdx.x, threadIdx.y, and threadIdx.z 

• blockIdx can have maximum 2 dimensions 

– blockIdx.x and blockIdx.y 

• Why multiple dimensions? 

– Programmer’s convenience 

– Think about working with a 2D array 
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Thread      Parallelism 

Types of parallelism: 

• Thread-level Task Parallelism  

– Every thread or group of threads, executes a different instruction 

– Not ideal because of thread divergence 

• Task Parallelism  

– Different blocks perform different tasks 

– Invoke multiple kernels to perform different tasks 

• Data Parallelism 

– Shared memory across threads and blocks 
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Thread      Warp 

Threads in a block are bundled into small groups of warps 

• 1 warp = 32 Threads with consecutive threadIdx values 

– Example: [0..31] from the first warp, [32…63] from the second warp 

 

• A full warp is mapped to the SIMD unit (Single Instruction Multiple 

Threads, SIMT) 

 

• Threads in a warp cannot diverge 

– Divergence serializes the execution 

 

• Example: In an if-then-else construct: 

1. All threads will execute then 

2. then execute else.  
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Memory      Memory Model 

• Kernel 

– per-device Global Memory 

• Block 

– per-block shared memory 

• Thread 

– per-thread register 

 

• CPU and GPU do not share 

memory 

 

Two-way arrows indicate read/write capability 
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• per-thread register 

– Private, storage for local variables 

– Fastest 

– Life time: thread 

• per-block shared memory 

– Shared within a block 

– 48k, fast 

– Life time: Kernel 

– __shared__  qualifier 

• per-device global memory 

– Shared 

– 5G, Slowest 

– Life time: Application 

Memory      Memory Model 
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Memory      Memory Transfer 

• Allocate device memory 

– cudaMalloc() 

 

• Memory transfer between host and device 

– cudaMemcpy() 
 

• Deallocate memory 

– cudaFree() 
 

 

Host Device 
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Memory      Lab 2: Vector Add 

int main() 

{ 

 //Host memory allocation 

 //Host Memory Allocation 

 h_A=(float *)malloc(size); 

 h_B=(float *)malloc(size); 

 h_C=(float *)malloc(size); 

 

 //Device memory allocation 

 cudaMalloc((void **)&d_A, size); 

 cudaMalloc((void **)&d_B, size); 

        cudaMalloc((void **)&d_C, size); 

  

 //Memory transfer, kernel invocation 

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); 

 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); 

 cudaMemcpy(d_C, h_C, size, cudaMemcpyHostToDevice); 

   

 vec_add<<<N/512, 512>>>(d_A, d_B, d_C); 

 

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

 

 cudaFree(d_A); 

 cudaFree(d_B); 

 cudaFree(d_C); 

 free(h_A); 

 free(h_B); 

 free(h_C); 

} 

 

Allocate host memory 

Allocate device memory 

Transfer memory from host to device 

Invoke the kernel 

Deallocate the memory 

Transfer memory from device to host 

h_varname : host memory 

d_varname : device memory 
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Memory      Lab 2: Vector Add 

//Vector Size 

#define N 5120000 

 

//Kernel function 

__global__  

void vec_add(float *d_A, float *d_B, float *d_C) 

{ 

 //Define Index 

 int i=blockDim.x * blockIdx.x + threadIdx.x; 

 

 //Vector Add 

 d_C[i]=d_A[i]+d_B[i]; 

} 

 

int main() 

{ 

 … 

 vec_add<<<N/512, 512>>>(d_A, d_B, d_C); 

 …  

} 



6/17/2013 www.cac.cornell.edu 30 

Memory      Lab 2: Vector Add 

$ cd $HOME/Intro_CUDA/vectoradd 

$ nvcc -arch=sm_30 vectoradd.cu -o vectoradd 

$ sbatch batch.sh 

• Things to try on your own (After the talk): 

– Time the performance using different vector length 

– Time the performance using different block size  

• Timing tool: 

– /usr/bin/time –p <executable>  

– CUDA also provides a better timing tool, see NVIDIA Documentation 

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
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Advanced      Performance Topics 

• Minimize execution divergence 

– Thread divergence serializes the execution 

 

• Maximize on-chip memory (per-block shared, and per-thread) 

– Global memory is slow (~200GB/s) 

 

• Optimize memory access 

– Coalesced memory access 
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Advanced      Performance Topics 

• What is coalesced memory access? 

– Combine all memory transactions into a single warp access 

– K20: 32 threads * 4-byte word = 128 bytes 

 

• What are the requirements? 

– Memory alignment 

– Sequential memory access 

– Dense memory access 

 



Advanced      Performance Topics 
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1 Transaction 

Sequential and  

aligned 

(Stride 1) 

1 Transaction 

Non-sequential and 

Aligned 

(Stride 1) 

 

2 Transactions 

Sequential and 

Misaligned 

(Stride 2) 



Advanced      Performance Topics 
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• Consider the following code: 

– Is memory access aligned? 

– Is memory access sequential? 

 

  

 

 

 

 

//The variable, offset, is a constant 

int i=blockDim.x * blockIdx.x + threadIdx.x; 

int j=blockDim.x * blockIdx.x + threadIdx.x + offset;     

d_B2[i]=d_A2[j]; 
 



Summary 

• GPU is very good at massive parallel jobs, and CPU is very good at 

serial processing 

 

• Avoid thread divergence 

 

• Use on-chip memory 

 

• Always try to perform coalesced memory access 
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Final       Lab 3: Matrix Multiplication 
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$ cd $HOME/Intro_CUDA/matrix_mul 

$ nvcc -arch=sm_30 matrix_mul.cu -o matmul 

$ sbatch batch.sh 

• Things to try on your own (After the talk): 

– Compare the performance to the CUDA BLAS matrix multiplication 

routine 

– Can you improve the performance of it? 

• Hints: 

– Use on-chip memory 

– Use page-locked memory (see cudaMallocHost()) 

http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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