
Introduction to CUDA Programming

Philip Nee

Cornell Center for Advanced Computing

June 2013

Based on materials developed by CAC and TACC

6/17/2013 www.cac.cornell.edu 2

Overview Outline

• Heterogeneous Parallel Computing

• Stampede and NVIDIA K20 GPU

• Programming Structure

• Thread Hierarchy

• Memory Model

• Performance Topics

6/17/2013 www.cac.cornell.edu 3

Overview Terminology

• GPU – Graphics Processing Unit

• CUDA – Compute Unified Device Architecture

• Manycore

• Multicore

• SM – Stream Multiprocessor

• SIMD – Single Instruction Multiple Data

• SIMT – Single Instruction Multiple Threads

6/17/2013 www.cac.cornell.edu 4

Overview

What is CUDA?

• Compute Unified Device Architecture

– Manycore and shared-memory programming model

– An Application Programming Interface (API)

– General-purpose computing on GPU (GPGPU)

• Multicore vs Manycore

– Multicore – Small number of sophisticated cores

– Manycore – Large number of weaker cores

6/17/2013 www.cac.cornell.edu 5

Overview

• Why CUDA?

– High level

• C/C++/Fortran language extensions

– Scalability

– Thread-level abstraction

– Runtime library

– Thrust parallel algorithm library

• Limitations

– Not vendor neutral: NVIDIA CUDA-enabled GPUs only

• Alternative: OpenCL

 This course will be in C

http://docs.nvidia.com/cuda/thrust/
http://www.khronos.org/opencl/

6/17/2013 www.cac.cornell.edu 6

Overview

Why are we using GPU?

• Parallel and multithread hardware design

• Floating point computation

• Graphic rendering

• General-purpose computing

• Energy Efficiency

• More FLOPS per Watt than CPU

• MIC vs GPU

• Comparable performance

• Different programming models

Overview

6/17/2013 www.cac.cornell.edu 7

6/17/2013 www.cac.cornell.edu 8

Overview Heterogeneous Parallel Computing

Different designs for different purposes

• CPU: Fast serial processing

– Large on-chip cache, to minimize read/write latency

– Sophisticated logic control

• GPU: High computational throughputs

– Large number of cores

– High memory bandwidth

6/17/2013 www.cac.cornell.edu 9

Overview Heterogeneous Parallel Computing

Sandy Bridge

E5 - 2680

NVIDIA Tesla

K20

Processing Units 8 13 SMs, each with 192

cores, 2496 cores total

Clock Speed (GHz) 2.7 0.706

Maximum Threads 8 cores, 2 threads each = 16

threads

13 SMs, each with 192

cores, 32 way SIMD = 79872

threads

Memory Bandwidth 51.6 GB/s 205 GB/s

L1 Cache Size 64 KB/core 64 KB/SMs

L2 Cache Size 256 KB/core 768 KB, shared

L3 Cache Size 20MB N/A

SM = Stream Multiprocessor

6/17/2013 www.cac.cornell.edu 10

Overview SIMD

• SISD: Single Instruction Single Data

• SIMD: Single Instruction Multiple Data

– A vector instruction that perform the same operation on multiple data

simultaneously

• SIMD Instruction Sets:

– MMX
• Multimedia eXtension

– SSE
• Streaming SIMD Extensions

– AVX
• Advanced Vector Extensions

Overview CUDA on Stampede

6/17/2013 www.cac.cornell.edu 11

• 6400+ compute nodes, each has:

– 2 Sandy Bridge processors (E5-

2680)

– 1 Xeon Phi Coprocessor (MIC)

• There are 128 GPU nodes, each is

augmented with1 NVIDIA K20 GPU

• Login nodes do not have GPU cards

installed!

Overview CUDA on Stampede

6/17/2013 www.cac.cornell.edu 12

Running your GPU application on Stampede:

• Load CUDA software using the module utility

• Compile your code using the NVIDIA nvcc compiler

– Acts like a wrapper, hiding the intrinsic compilation details for GPU code

• Submit your job to a GPU queue

Basics Lab 1: Querying Device

6/17/2013 www.cac.cornell.edu 13

1. Extract the lab files to the home directory

$ module load cuda

2. Load the CUDA software

$ cd $HOME

$ tar xvf ~tg459572/LABS/Intro_CUDA.tar

Basics Lab 1: Querying Device

6/17/2013 www.cac.cornell.edu 14

$ nvcc -arch=sm_30 devicequery.cu -o devicequery

3. Go to lab 1 directory, devicequery

$ cd Intro_CUDA/devicequery

• There are 2 files:

– Source code: devicequery.cu

– Batch script: batch.sh

4. Use NVIDIA nvcc compiler, to compile the source code

Basics Lab 1: Querying Device

6/17/2013 www.cac.cornell.edu 15

5. Job submission:

– Running 1 task on 1 node: #SBATCH -n 1

– GPU development queue: #SBATCH -p gpudev

$ sbatch batch.sh

$ more gpu_query.o[job ID]

Queue Name Time Limit Description

gpu 24 hrs GPU queue

gpudev 4 hrs GPU development

node

vis 8 hrs GPU nodes + VNC

service

Basics Lab 1: Querying Device

6/17/2013 www.cac.cornell.edu 16

CUDA Device Query...

There are 1 CUDA devices.

CUDA Device #0

Major revision number: 3

Minor revision number: 5

Name: Tesla K20m

Total global memory: 5032706048

Total shared memory per block: 49152

Total registers per block: 65536

Warp size: 32

Maximum memory pitch: 2147483647

Maximum threads per block: 1024

Maximum dimension 0 of block: 1024

Maximum dimension 1 of block: 1024

Maximum dimension 2 of block: 64

Maximum dimension 0 of grid: 2147483647

Maximum dimension 1 of grid: 65535

Maximum dimension 2 of grid: 65535

Clock rate: 705500

Total constant memory: 65536

Texture alignment: 512

Concurrent copy and execution: Yes

Number of multiprocessors: 13

Kernel execution timeout: No

6/17/2013 www.cac.cornell.edu 17

Basics Programming Structure

• Host Code

– Your CPU codes

– Takes care of:

• Device memory

• Kernel invocation

• Kernel Code

– Your GPU code

– Executed on the device

– __global__ qualifier

• Must have return type void

6/17/2013 www.cac.cornell.edu 18

int main() {

 …

 //CPU code

 [Invoke GPU functions]

 …

}

__global___

void gpufunc(arg1, arg2, …){

 …

 //GPU code

 …

}

Basics Programming Structure

• Function Type Qualifiers in CUDA

__global__

• Callable from the host only

• Executed on the device

• void return type

__device__

• Executed on the device only

• Callable from the device only

__host__

• Executed on the host only

• Callable from the host only

• Equivalent to declare a function without any qualifier

• There are variable type qualifiers available

• Visit the NVIDIA documentation for detail information

6/17/2013 www.cac.cornell.edu 19

Basics Programming Structure

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

• Kernel is invoked from the host

• Calling a kernel uses familiar syntax (function/subroutine call)

augmented by Chevron syntax

• The Chevron syntax (<<<…>>>) configures the kernel

– First argument: How many blocks in a grid

– Second argument: How many threads in a block

6/17/2013 www.cac.cornell.edu 20

int main() {

 …

 //Kernel Invocation

 gpufunc<<<gridConfig,

blkConfig>>>(arguments…)

 …

}

Basics Programming Structure

Thread Thread Hierarchies

• Thread

• Block

– Assigned to a SM

– Independent

– Threads within a block can:

• Synchronize

• Share data

• communicate

– On K20: 1024 threads per block (max)

• Grid

– Invoked kernel

6/17/2013 www.cac.cornell.edu 21

Thread Keywords

• Threads and blocks have its unique ID

– Thread: threadIdx

– Block: blockIdx

• threadIdx can have maximum 3 dimensions

– threadIdx.x, threadIdx.y, and threadIdx.z

• blockIdx can have maximum 2 dimensions

– blockIdx.x and blockIdx.y

• Why multiple dimensions?

– Programmer’s convenience

– Think about working with a 2D array

6/17/2013 www.cac.cornell.edu 22

Thread Parallelism

Types of parallelism:

• Thread-level Task Parallelism

– Every thread or group of threads, executes a different instruction

– Not ideal because of thread divergence

• Task Parallelism

– Different blocks perform different tasks

– Invoke multiple kernels to perform different tasks

• Data Parallelism

– Shared memory across threads and blocks

6/17/2013 www.cac.cornell.edu 23

Thread Warp

Threads in a block are bundled into small groups of warps

• 1 warp = 32 Threads with consecutive threadIdx values

– Example: [0..31] from the first warp, [32…63] from the second warp

• A full warp is mapped to the SIMD unit (Single Instruction Multiple

Threads, SIMT)

• Threads in a warp cannot diverge

– Divergence serializes the execution

• Example: In an if-then-else construct:

1. All threads will execute then

2. then execute else.

6/17/2013 www.cac.cornell.edu 24

6/17/2013 www.cac.cornell.edu 25

Memory Memory Model

• Kernel

– per-device Global Memory

• Block

– per-block shared memory

• Thread

– per-thread register

• CPU and GPU do not share

memory

Two-way arrows indicate read/write capability

6/17/2013 www.cac.cornell.edu 26

• per-thread register

– Private, storage for local variables

– Fastest

– Life time: thread

• per-block shared memory

– Shared within a block

– 48k, fast

– Life time: Kernel

– __shared__ qualifier

• per-device global memory

– Shared

– 5G, Slowest

– Life time: Application

Memory Memory Model

6/17/2013 www.cac.cornell.edu 27

Memory Memory Transfer

• Allocate device memory

– cudaMalloc()

• Memory transfer between host and device

– cudaMemcpy()

• Deallocate memory

– cudaFree()

Host Device

6/17/2013 www.cac.cornell.edu 28

Memory Lab 2: Vector Add

int main()

{

 //Host memory allocation

 //Host Memory Allocation

 h_A=(float *)malloc(size);

 h_B=(float *)malloc(size);

 h_C=(float *)malloc(size);

 //Device memory allocation

 cudaMalloc((void **)&d_A, size);

 cudaMalloc((void **)&d_B, size);

 cudaMalloc((void **)&d_C, size);

 //Memory transfer, kernel invocation

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_C, h_C, size, cudaMemcpyHostToDevice);

 vec_add<<<N/512, 512>>>(d_A, d_B, d_C);

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

 free(h_A);

 free(h_B);

 free(h_C);

}

Allocate host memory

Allocate device memory

Transfer memory from host to device

Invoke the kernel

Deallocate the memory

Transfer memory from device to host

h_varname : host memory

d_varname : device memory

6/17/2013 www.cac.cornell.edu 29

Memory Lab 2: Vector Add

//Vector Size

#define N 5120000

//Kernel function

__global__

void vec_add(float *d_A, float *d_B, float *d_C)

{

 //Define Index

 int i=blockDim.x * blockIdx.x + threadIdx.x;

 //Vector Add

 d_C[i]=d_A[i]+d_B[i];

}

int main()

{

 …

 vec_add<<<N/512, 512>>>(d_A, d_B, d_C);

 …

}

6/17/2013 www.cac.cornell.edu 30

Memory Lab 2: Vector Add

$ cd $HOME/Intro_CUDA/vectoradd

$ nvcc -arch=sm_30 vectoradd.cu -o vectoradd

$ sbatch batch.sh

• Things to try on your own (After the talk):

– Time the performance using different vector length

– Time the performance using different block size

• Timing tool:

– /usr/bin/time –p <executable>

– CUDA also provides a better timing tool, see NVIDIA Documentation

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

6/17/2013 www.cac.cornell.edu 31

Advanced Performance Topics

• Minimize execution divergence

– Thread divergence serializes the execution

• Maximize on-chip memory (per-block shared, and per-thread)

– Global memory is slow (~200GB/s)

• Optimize memory access

– Coalesced memory access

6/17/2013 www.cac.cornell.edu 32

Advanced Performance Topics

• What is coalesced memory access?

– Combine all memory transactions into a single warp access

– K20: 32 threads * 4-byte word = 128 bytes

• What are the requirements?

– Memory alignment

– Sequential memory access

– Dense memory access

Advanced Performance Topics

6/17/2013 www.cac.cornell.edu 33

1 Transaction

Sequential and

aligned

(Stride 1)

1 Transaction

Non-sequential and

Aligned

(Stride 1)

2 Transactions

Sequential and

Misaligned

(Stride 2)

Advanced Performance Topics

6/17/2013 www.cac.cornell.edu 34

• Consider the following code:

– Is memory access aligned?

– Is memory access sequential?

//The variable, offset, is a constant

int i=blockDim.x * blockIdx.x + threadIdx.x;

int j=blockDim.x * blockIdx.x + threadIdx.x + offset;

d_B2[i]=d_A2[j];

Summary

• GPU is very good at massive parallel jobs, and CPU is very good at

serial processing

• Avoid thread divergence

• Use on-chip memory

• Always try to perform coalesced memory access

6/17/2013 www.cac.cornell.edu 35

Final Lab 3: Matrix Multiplication

6/17/2013 www.cac.cornell.edu 36

$ cd $HOME/Intro_CUDA/matrix_mul

$ nvcc -arch=sm_30 matrix_mul.cu -o matmul

$ sbatch batch.sh

• Things to try on your own (After the talk):

– Compare the performance to the CUDA BLAS matrix multiplication

routine

– Can you improve the performance of it?

• Hints:

– Use on-chip memory

– Use page-locked memory (see cudaMallocHost())

http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

References

Recommended Reading:

• CUDA Documentation

• Hwu, Wen-Mei; Kirk, David. (2010). Programming Massively Parallel

Processors: A Hands-on Approach.

6/17/2013 www.cac.cornell.edu 37

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY
http://www.amazon.com/dp/0123814723?tag=wwwnvidiacomc-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0123814723&adid=1DT2S034DXS37V3K5FFY

