

Introduction to CUDA Programming

Philip Nee Cornell Center for Advanced Computing

June 2013

Based on materials developed by CAC and TACC

Overview

Outline

- Heterogeneous Parallel Computing
- Stampede and NVIDIA K20 GPU
- Programming Structure
- Thread Hierarchy
- Memory Model
- Performance Topics

Overview

Terminology

- GPU Graphics Processing Unit
- CUDA Compute Unified Device Architecture
- Manycore
- Multicore
 - SM Stream Multiprocessor
- SIMD Single Instruction Multiple Data
 - SIMT Single Instruction Multiple Threads

Overview

What is CUDA?

- Compute Unified Device Architecture
 - Manycore and shared-memory programming model
 - An Application Programming Interface (API)
 - General-purpose computing on GPU (GPGPU)
- Multicore vs Manycore
 - Multicore Small number of sophisticated cores
 - Manycore Large number of weaker cores

Overview

- Why CUDA?
 - High level
 - C/C++/Fortran language extensions
 - Scalability
 - Thread-level abstraction
 - Runtime library
 - <u>Thrust</u> parallel algorithm library
- Limitations
 - Not vendor neutral: NVIDIA CUDA-enabled GPUs only
 - Alternative: <u>OpenCL</u>

This course will be in C

Overview

Why are we using GPU?

- Parallel and multithread hardware design
- Floating point computation
 - Graphic rendering
 - General-purpose computing
- Energy Efficiency
 - More FLOPS per Watt than CPU
- MIC vs GPU
 - Comparable performance
 - Different programming models

Overview Heterogeneous Parallel Computing

CPU Architecture

GPU Architecture

Different designs for different purposes

- CPU: Fast serial processing
 - Large on-chip cache, to minimize read/write latency
 - Sophisticated logic control
- GPU: High computational throughputs
 - Large number of cores
 - High memory bandwidth

Overview Heterogeneous Parallel Computing

	Sandy Bridge E5 - 2680	NVIDIA Tesla K20	
Processing Units	8	13 SMs, each with 192 cores, 2496 cores total	
Clock Speed (GHz)	2.7	0.706	
Maximum Threads	8 cores, 2 threads each = 16 threads	13 SMs, each with 192 cores, 32 way SIMD = 79872 threads	
Memory Bandwidth	51.6 GB/s	205 GB/s	
L1 Cache Size	64 KB/core	64 KB/SMs	
L2 Cache Size	256 KB/core	768 KB, shared	
L3 Cache Size	20MB	N/A M = Stream Multiprocessor	

Overview

SIMD

- SISD: Single Instruction Single Data
- SIMD: Single Instruction Multiple Data
 - A vector instruction that perform the same operation on multiple data simultaneously

Overview

Cornell University Center for Advanced Computing

CUDA on Stampede

- 6400+ compute nodes, each has:
 - 2 Sandy Bridge processors (E5-2680)
 - 1 Xeon Phi Coprocessor (MIC)
- There are 128 GPU nodes, each is augmented with1 NVIDIA K20 GPU
- Login nodes do not have GPU cards installed!

Overview CUDA on Stampede

Running your GPU application on Stampede:

- Load CUDA software using the *module* utility
- Compile your code using the NVIDIA *nvcc* compiler
 Acts like a wrapper, hiding the intrinsic compilation details for GPU code
- Submit your job to a GPU queue

Basics

Lab 1: Querying Device

1. Extract the lab files to the home directory

\$ cd \$HOME \$ tar xvf ~tg459572/LABS/Intro_CUDA.tar

2. Load the CUDA software

\$ module load cuda

Basics

Lab 1: Querying Device

3. Go to lab 1 directory, *devicequery*

\$ cd Intro_CUDA/devicequery

- There are 2 files:
 - Source code: *devicequery.cu*
 - Batch script: *batch.sh*
- 4. Use NVIDIA nvcc compiler, to compile the source code

\$ nvcc -arch=sm_30 devicequery.cu -o devicequery

Basics

Lab 1: Querying Device

- 5. Job submission:
 - Running 1 task on 1 node: #SBATCH -n 1
 - GPU development queue: #SBATCH -p gpudev

\$ sbatch batch.sh \$ more gpu_query.o[job ID]

Queue Name	Time Limit	Description	
gpu	24 hrs	GPU queue	
gpudev	4 hrs	GPU development node	
vis	8 hrs	GPU nodes + VNC service	

Basics

Lab 1: Querying Device

CUDA Device Query... There are 1 CUDA devices.

CUDA Device #0	
Major revision number:	3
Minor revision number:	5
Name:	Tesla K20m
Total global memory:	5032706048
Total shared memory per block:	49152
Total registers per block:	65536
Warp size:	32
Maximum memory pitch:	2147483647
Maximum threads per block:	1024
Maximum dimension 0 of block:	1024
Maximum dimension 1 of block:	1024
Maximum dimension 2 of block:	64
Maximum dimension 0 of grid:	2147483647
Maximum dimension 1 of grid:	65535
Maximum dimension 2 of grid:	65535
Clock rate:	705500
Total constant memory:	65536
Texture alignment:	512
Concurrent copy and execution:	Yes
Number of multiprocessors:	13
Kernel execution timeout:	No

Basics

Cornell University Center for Advanced Computing

Programming Structure

- Host Code
 - Your CPU codes
 - Takes care of:
 - Device memory
 - Kernel invocation

//CPU code [Invoke GPU functions]

- Kernel Code
 - Your GPU code
 - Executed on the device
 - _global_ qualifier
 - Must have return type void

global void gpufunc(arg1, arg2,){
 //GPU code
}

Basics

Programming Structure

Function Type Qualifiers in CUDA

global

- Callable from the host only
- Executed on the device
- void return type

__device___

- Executed on the device only
- Callable from the device only

__host__

- Executed on the host only
- Callable from the host only
- Equivalent to declare a function without any qualifier
- There are variable type qualifiers available
- Visit the NVIDIA documentation for detail information

Basics

Programming Structure

• Kernel is invoked from the host

- Calling a kernel uses familiar syntax (function/subroutine call) augmented by Chevron syntax
- The Chevron syntax (<<<...>>>) configures the kernel
 - First argument: How many blocks in a grid
 - Second argument: How many threads in a block

Thread

Cornell University Center for Advanced Computing

Thread Hierarchies

- Thread
- Block
 - Assigned to a SM
 - Independent
 - Threads within a block can:
 - Synchronize
 - Share data
 - communicate
 - On K20: 1024 threads per block (max)
- Grid
 - Invoked kernel

Т	h	r	e	а	d

Grid

Thread

Keywords

- Threads and blocks have its unique ID
 - Thread: threadIdx
 - Block: *blockldx*
- threadIdx can have maximum 3 dimensions
 - threadIdx.x, threadIdx.y, and threadIdx.z
- *blockldx* can have maximum 2 dimensions
 - blockldx.x and blockldx.y
- Why multiple dimensions?
 - Programmer's convenience
 - Think about working with a 2D array

Thread

Parallelism

Types of parallelism:

- Thread-level Task Parallelism
 - Every thread or group of threads, executes a different instruction
 - Not ideal because of thread divergence
- Task Parallelism
 - Different blocks perform different tasks
 - Invoke multiple kernels to perform different tasks
- Data Parallelism
 - Shared memory across threads and blocks

Thread

Warp

Threads in a block are bundled into small groups of *warps*

- 1 warp = 32 Threads with consecutive threadIdx values
 - Example: [0..31] from the first warp, [32...63] from the second warp
- A full warp is mapped to the SIMD unit (Single Instruction Multiple Threads, *SIMT*)
- Threads in a warp cannot diverge
 - Divergence serializes the execution
- Example: In an *if-then-else* construct:
 - 1. All threads will execute then
 - 2. then execute else.

Memory Model

Kernel

Memory

- per-device Global Memory
- Block
 - per-block shared memory
- Thread
 - per-thread register
- CPU and GPU do not share memory

Two-way arrows indicate read/write capability

Memory

Memory Model

- per-thread register
 - Private, storage for local variables
 - Fastest
 - Life time: thread
- per-block shared memory
 - Shared within a block
 - 48k, fast
 - Life time: Kernel
 - ___shared___ qualifier
- per-device global memory
 - Shared
 - 5G, Slowest
 - Life time: Application

Memory

Memory Transfer

- Allocate device memory
 - cudaMalloc()
- Memory transfer between host and device
 - cudaMemcpy()
- Deallocate memory
 - cudaFree()

Memory

Cornell University Center for Advanced Computing

Lab 2: Vector Add

Memory

Cornell University Center for Advanced Computing

Lab 2: Vector Add

\$ cd \$HOME/Intro_CUDA/vectoradd \$ nvcc -arch=sm_30 vectoradd.cu -o vectoradd \$ sbatch batch.sh

- Things to try on your own (After the talk):
 - Time the performance using different vector length
 - Time the performance using different block size
- Timing tool:
 - /usr/bin/time –p <executable>
 - CUDA also provides a better timing tool, see <u>NVIDIA Documentation</u>

Advanced

Cornell University Center for Advanced Computing

Performance Topics

- Minimize execution divergence
 - Thread divergence serializes the execution
- Maximize on-chip memory (per-block shared, and per-thread)
 - Global memory is slow (~200GB/s)
- Optimize memory access
 - Coalesced memory access

Advanced

Performance Topics

- What is *coalesced memory access?*
 - Combine all memory transactions into a single warp access
 - K20: 32 threads * 4-byte word = 128 bytes
- What are the requirements?
 - Memory alignment
 - Sequential memory access
 - Dense memory access

Advanced

Performance Topics

- Consider the following code:
 - Is memory access aligned?
 - Is memory access sequential?

//The variable, offset, is a constant
int i=blockDim.x * blockIdx.x + threadIdx.x;
int j=blockDim.x * blockIdx.x + threadIdx.x + offset;
d_B2[i]=d_A2[j];

Summary

- GPU is very good at massive parallel jobs, and CPU is very good at serial processing
- Avoid thread divergence
- Use on-chip memory
- Always try to perform coalesced memory access

Final

Lab 3: Matrix Multiplication

\$ cd \$HOME/Intro_CUDA/matrix_mul
\$ nvcc -arch=sm_30 matrix_mul.cu -o matmul
\$ sbatch batch.sh

- Things to try on your own (After the talk):
 - Compare the performance to the <u>CUDA BLAS</u> matrix multiplication routine
 - Can you improve the performance of it?
 - Hints:
 - Use on-chip memory
 - Use page-locked memory (see cudaMallocHost())

References

Recommended Reading:

- <u>CUDA Documentation</u>
- <u>Hwu, Wen-Mei; Kirk, David. (2010). Programming Massively Parallel</u> <u>Processors: A Hands-on Approach</u>.