
MIC Lab

Parallel Computing on Stampede

Aaron Birkland and Steve Lantz

Cornell Center for Advan
ed Computing

O
t 21 & 30, 2013

1 Intera
tive Laun
hing

This exer
ise will walk through intera
tively laun
hing appli
ations on a single
opro
essor

on Stampede through SSH and the mi
run laun
her.

1. Log into Stampede and unpa
k the lab materials into your home dire
tory if you

haven't done so already.

login$
d

login$ tar xvf ~tg459572/LABS/mi
.tar

2. Change into the mi
/exer
ise1 dire
tory

3. Start an Intera
tive session with one node:

srun -A TG-TRA120006 -p development -t 0:30:00 -n 1 --pty /bin/bash -l

� If you have only one Stampede a

ount, you do not need the -A argument. It

doesn't hurt to keep it, though

� Please note there are two dashes before pty

� The last option is the letter \l", not the number \1"

4. In the exer
ise1 dire
tory, you will �nd a C �le where.
. It prints out the
urrent

hostname, as well as the
ontent of the MY ENV environment variable. Compile it for

the host CPU, and the MIC
opro
essor. You will end up with two exe
utables. Note

the .mi
 and .
pu
onvention. This is useful to avoid
onfusing the two.

557-804$ i

 where.
 -o where.
pu

557-804$ i

 -mmi
 where.
 -o where.mi

5. Run the host exe
utable

Cornell Center for Advan
ed Computing 1

557-804$./where.
pu

Host
557-804.stampede.ta

.utexas.edu; MY_ENV=

6. As you
an see, we did not set the MY ENV environment variable. Set it and re-run.

557-804$ export MY_ENV=42

557-804$./where.
pu

Host
557-804.stampede.ta

.utexas.edu; MY_ENV=42

7. Now run the MIC exe
utable. When we dire
tly exe
ute a MIC exe
utable from the

host, the mi
run laun
her is impli
itly invoked to remotely run the exe
utable on the

opro
essor rather than the host.

557-804$./where.mi

Host
557-804-mi
0.stampede.ta

.utexas.edu; MY_ENV=

Noti
e the hostname. The mi
0 part indi
ates that our program did truly run on the

opro
essor. However, the environment variable is not de�ned there! This is be
ause

the mi
run laun
her only passes along variables that begin with the MIC pre�x.

8. Set the MIC MY ENV variable and re-run

557-804$ export MIC_MY_ENV=mi
42

557-804$./where.mi

Host
557-804-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

9. Now, try to ssh dire
tly into the MIC
opro
essor and run the exe
utable:

557-804$ ssh mi
0

TACC Stampede System - MIC Co-Pro
essor

[A

ess enabled for user apb18℄

~ $./where.mi

-sh: ./where.mi
: not found

10. Oops! When we ssh into the
opro
essor, we end up in the top level of our home

dire
tory.
d into our lab dire
tory and re-run.

~$
d mi
/exer
ise1

~/mi
/exer
ise1 $./where.mi

Host
557-804-mi
0.stampede.ta

.utexas.edu; MY_ENV=

Cornell Center for Advan
ed Computing 2

Noti
e that the environment variable is unde�ned. Using pure ssh, environment vari-

ables are not propagated between the host and the
opro
essor. We need to de�ne it

manually.

11. Set the MY ENV environment variable and re-run.

~/mi
/example1 $ export MY_ENV=mi
42

~/mi
/example1 $./where.mi

Host
557-804-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

12. When �nished exit the
opro
essor, then exit the
ompute node to terminate the

intera
tive session and return to the login node.

2 Simple Symmetri
 MPI example

This exer
ise will explore symmetri
 exe
ution using MPI pro
esses on host and MIC
o-

pro
essors. We will use an MPI-aware version of the where program from exer
ise 1. Ea
h

pro
ess will announ
e its rank, and the value of MY ENV environment variable. We will verify

that we
an
ontrol MPI pro
ess laun
hing on both hosts and MIC
opro
essors.

1. Unpa
k the lab materials into your home dire
tory. If you've done the �rst two

examples, there is no need to do this again.

login$
d

login$ tar xvf ~tg459572/LABS/mi
.tar

2. Change into the mi
/exer
ise2 dire
tory.

3. Create two exe
utables: one for the host CPU (where mpi.
pu), and one for the MIC

opro
essor (where mpi.mi
). Make sure to use the Intel MPI implementation (impi)

login$ module swap mvapi
h2 impi

login$ mpi

 where_mpi.
 -o where_mpi.
pu

login$ mpi

 -mmi
 where_mpi.
 -o where_mpi.mi

� If impi is already loaded, then you may omit the module swap line. Che
k with

module list if you are not sure.

4. Take a look at the where.sh bat
h submission s
ript. As it stands, it will use

ibrun.symm to laun
h two MPI pro
esses on one MIC
opro
essor, and no pro
esses

on the host.

login$
at where.sh

#!/bin/bash

#SBATCH -t 00:05:00

Cornell Center for Advan
ed Computing 3

#SBATCH -n 1

#SBATCH -p development

#SBATCH -A TG-TRA120006

e
ho "Running on MIC"

export MIC_PPN=2

export MY_ENV=42

ibrun.symm -m where_mpi.mi

Note that ibrun.symm takes -m and -
 arguments to spe
ify MIC and CPU exe
uta-

bles, respe
tively. Sin
e we just want to run on the MIC
opro
essors initially, no -

argument is spe
i�ed.

5. Run the where.sh s
ript, and examine the output/ Remember, your slurm output �le

will be named di�erently:

login$ sbat
h where.sh

login$
at slurm-920435.out

Running on MIC

TACC: Starting up job 920435

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.920435.h5eb2YgW

Rank 1 of 2, host
559-301-mi
0.stampede.ta

.utexas.edu; MY_ENV=42

Rank 0 of 2, host
559-301-mi
0.stampede.ta

.utexas.edu; MY_ENV=42

TACC: Shutdown
omplete. Exiting

Noti
e that, unlike the previous example, when we de�ne de�ne a MY ENV environment

variable, it is visible to the pro
esses running on the MIC. However, spe
ifying a MIC

pre�xed version of a variable will override the non-pre�xed one for pro
esses running

on the
opro
essor. Let's verify this.

6. Edit the where.sh s
ript to add the line export MIC MY ENV=mi
42, and re-exe
ute.

#!/bin/bash

#SBATCH -t 00:05:00

#SBATCH -n 1

#SBATCH -p development

#SBATCH -A TG-TRA120006

e
ho "Running on MIC"

export MIC_PPN=2

export MIC_MY_ENV=mi
42

export MY_ENV=42

ibrun.symm -m where_mpi.mi

Cornell Center for Advan
ed Computing 4

login$ sbat
h where.sh

login$
at slurm-920488.out

Running on MIC

TACC: Starting up job 920488

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.920488.Vghpo0QI

Rank 1 of 2, host
558-202-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 0 of 2, host
558-202-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

TACC: Shutdown
omplete. Exiting.

7. Now let's involve the hosts. Edit the s
ript so that ibrun.symm runs both MIC and

CPU exe
utables, and spe
ify that three pro
esses should run on the host via the

SLURM parameter -n.

#!/bin/bash

#SBATCH -t 00:05:00

#SBATCH -n 3

#SBATCH -p development

#SBATCH -A TG-TRA120006

e
ho "Running on MIC and CPU"

export MIC_PPN=2

export MY_ENV=42

export MIC_MY_ENV=mi
42

ibrun.symm -m where_mpi.mi
 -
 where_mpi.
pu

8. Submit the bat
h job, and verify the results

login$ sbat
h where.sh

login$
at slurm-920358.out

Running on MIC and CPU

TACC: Starting up job 920358

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.920358.vqGVT4kT

Rank 2 of 5, host
560-702.stampede.ta

.utexas.edu; MY_ENV=42

Rank 1 of 5, host
560-702.stampede.ta

.utexas.edu; MY_ENV=42

Rank 0 of 5, host
560-702.stampede.ta

.utexas.edu; MY_ENV=42

Rank 3 of 5, host
560-702-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 4 of 5, host
560-702-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

TACC: Shutdown
omplete. Exiting.

9. Now edit where.sh so that it exe
utes on three nodes, with the same number of

pro
esses on ea
h host or
opro
essor (3 pro
esses per host, 2 per MIC). You will have

Cornell Center for Advan
ed Computing 5

to use -N to spe
ify the number of nodes, and -n to de�ne the total number of host

pro
esses.

#!/bin/bash

#SBATCH -t 00:05:00

#SBATCH -n 9

#SBATCH -N 3

#SBATCH -p development

#SBATCH -A TG-TRA120006

e
ho "Running on MIC"

export MIC_PPN=2

export MY_ENV=42

export MIC_MY_ENV=mi
42

ibrun.symm -m where_mpi.mi
 -
 where_mpi.
pu

10. Submit the bat
h job, and verify

login$ sbat
h where.sh

login$
at slurm-920411.out

Running on MIC

TACC: Starting up job 920411

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.920411.eJRO2NVZ

Rank 2 of 15, host
557-204.stampede.ta

.utexas.edu; MY_ENV=42

Rank 1 of 15, host
557-204.stampede.ta

.utexas.edu; MY_ENV=42

Rank 5 of 15, host
557-701.stampede.ta

.utexas.edu; MY_ENV=42

Rank 10 of 15, host
557-703.stampede.ta

.utexas.edu; MY_ENV=42

Rank 0 of 15, host
557-204.stampede.ta

.utexas.edu; MY_ENV=42

Rank 6 of 15, host
557-701.stampede.ta

.utexas.edu; MY_ENV=42

Rank 11 of 15, host
557-703.stampede.ta

.utexas.edu; MY_ENV=42

Rank 7 of 15, host
557-701.stampede.ta

.utexas.edu; MY_ENV=42

Rank 12 of 15, host
557-703.stampede.ta

.utexas.edu; MY_ENV=42

Rank 13 of 15, host
557-703-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 3 of 15, host
557-204-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 8 of 15, host
557-701-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 4 of 15, host
557-204-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 9 of 15, host
557-701-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

Rank 14 of 15, host
557-703-mi
0.stampede.ta

.utexas.edu; MY_ENV=mi
42

TACC: Shutdown
omplete. Exiting

We see three distin
t hosts, three CPU ranks on ea
h host, and two MIC ranks on

ea
h host. Su

ess!

Cornell Center for Advan
ed Computing 6

3 Non-trivial Symmetri
 hybrid example

In this example, we explore running a hybrid appli
ation symmetri
ally on host CPUs

and
opro
essors. We will use a hybrid (MPI+OpenMP) appli
ation for
al
ulating pi via

numeri
 integration. The argument to the program is the number of integration points -

the larger the number, the more
losely our number approa
hes the true value of pi.

The workload is divided evenly among the MPI ranks, and ea
h pro
ess uses a number

of OpenMP threads to pro
ess the work in a parallel for loop. It will be
ome apparent

that this is a
exible paradigm that allows us to de
ouple
omputing resour
es (number of

threads) from workload (number of pro
esses). This
exibility is espe
ially appre
iated on

the heterogeneous
omputing environment formed by the hosts and
opro
essors.

1. Unpa
k the lab materials into your home dire
tory. If you've done the �rst two

examples, there is no need to do this again.

login$
d

login$ tar xvf ~tg459572/LABS/mi
.tar

2. Change into the mi
/exer
ise3 dire
tory. You will see a �le named pi hybrid.
.

Feel free to take a look at it. It features a parallel for loop for
omputing the integral

on a parti
ular interval, as well as
ode to evenly divide the intervals among MPI

pro
esses.

3. Create two exe
utables: one for the host CPU (pi hybrid.
pu), and one for the

MIC
opro
essor (pi hybrid.mi
). Make sure to use the Intel MPI implementation

(impi). If impi is already loaded, then you may omit the module swap line. Che
k

with module list if you are not sure.

login$ module swap mvapi
h2 impi

login$ mpi

 -openmp -O2 pi_hybrid.
 -o pi_hybrid.
pu

login$ mpi

 -openmp -mmi
 -O2 pi_hybrid.
 -o pi_hybrid.mi

4. Look at the bat
h s
ript pi hybrid mi
.sh. It uses ibrun.symm to laun
h our hybrid

appli
ation on the MIC
opro
essors only (none on host). It laun
hes one pro
ess

on the
opro
essor, with 240 threads. With an almost entirely CPU-bound workload

without any memory dependen
ies between the threads, we
an assume that perfor-

man
e will be best when every
ore is
ompletely saturated with threads. For more

ompli
ated memory-bound workloads, this number should be determined empiri
ally.

5. Run the pi hybrid mi
.sh s
ript. It should take about a minute to �nish, on
e it

starts running.

login$ sbat
h pi_hybrid_mi
.sh

login$
at slurm-919904.out

Running on CPU

TACC: Starting up job 919942

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

Cornell Center for Advan
ed Computing 7

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.919942.8P
9rusv

My rank is: 0/1 host
559-503-mi
0.stampede.ta

.utexas.edu

0: Integrating samples 1 to 501000000000

0�
559-503-mi
0.stampede.ta

.utexas.edu DONE 42s

The value of pi is: 3.14159265

TACC: Shutdown
omplete. Exiting.

real 0m42.918s

user 0m0.037s

sys 0m0.025s

It took almost 43 se
onds to
al
ulate pi in this s
enario. As you
an see, only one MIC

opro
essor was utilized. Can you modify the s
ript to run on on two
opro
essors?

6. Look at the bat
h s
ript pi hybrid symm.sh. It uses ibrun.symm to laun
h our hybrid

MPI appli
ation on the hosts and MIC
opro
essors. Noti
e the OMP NUM THREADS and

MIC OMP NUM THREADS environment variables used to set di�erent numbers of threads

depending on where a pro
ess is running. Here, we laun
h one pro
ess on the CPU

and one on the MIC. We use the maximum number of threads for ea
h pro
ess.

7. Run the s
ript, and view the results when it is �nished. It should take about a minute

on
e the job is running. Note: your slurm output �le will have a di�erent name.

login$ sbat
h pi_hybrid_symm.sh

login$
at slurm-873851.out

Running on CPU and MIC

TACC: Starting up job 873851

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.873851.sv5jtzvi

My rank is: 0/2 host
558-504.stampede.ta

.utexas.edu

0: Integrating samples 1 to 250500000000

My rank is: 1/2 host
558-504-mi
0.stampede.ta

.utexas.edu

1: Integrating samples 250500000001 to 501000000000

1�
558-504-mi
0.stampede.ta

.utexas.edu DONE 21s

0�
558-504.stampede.ta

.utexas.edu DONE 55s

The value of pi is: 3.14159265

TACC: Shutdown
omplete. Exiting.

real 0m57.854s

user 14m51.654s

sys 0m0.088s

Cornell Center for Advan
ed Computing 8

In the above example, we laun
hed ONE pro
ess per devi
e (host,
opro
essor), and

spe
i�ed the maximum number of threads for ea
h. The workload was split evenly.

However, noti
e that it took almost 58 se
onds to
omplete. When we ran the same

ode on the
opro
essor only, it took 43 se
onds. How
an we add additional
omputing

power (the host CPUs), yet have the same
omputational workload exe
ute slower?

Take a look at the
omputation times printed out by ea
h MPI rank. Ea
h rank

re
eived half the workload. The MIC rank �nished in 21s, while the CPU rank �nished

in 55 se
onds. Be
ause the MIC is so mu
h faster than the CPU, it �nished its work

qui
kly and sat idle while the CPU struggled. Be
ause
omputing the end result

requires a barrier, the total
omputation time is
onstrained by the slowest worker.

Clearly, the work division is sub-optimal. We should assign more work to the MIC

opro
essor, and less to the CPU..

Be
ause our workload is CPU intensive, not memory bound, and does not involve a

ompli
ated
ommuni
ation topology, balan
ing the workload between the CPU and

opro
essor is straightforward. Ideally, we would want to pi
k a ratio of work for the

CPU and MIC that is roughly balan
ed. Be
ause our example
ode evenly divides the

work among MPI pro
esses, the work ratio is equal the ratio of number of pro
esses.

Sin
e the MIC appears to be 2.5 times as fast as the host CPUs for this parti
ular

appli
ation, we want to solve x+2.5x = 1 to �nd the best ratio x. In this
ase, that is

.29.

We'd like to use a simple proportion of pro
esses that is
lose to .29. A 1:3 ratio of

CPU to MIC pro
esses (.33) looks
lose enough. Let's try it and see if the results are

any more balan
ed.

Be
ause we want to utilize 100% of the CPU and 100% of the MIC, we want the ideal

number of threads to be
on
urrently exe
uting on ea
h devi
e. For the host, that

is 16 threads in this
ase. Empiri
al investigation shows that 240 threads results in

optimal performan
e on the MIC for our pi program.

At a 1:3 ratio of work, the CPU would get one pro
ess and the
opro
essor would get

3. For the CPU, then, we want that pro
ess to have 16 threads. For the MIC, we

want the sum of the three pro
esses to total 240. Therefore, ea
h pro
ess should be

allowed 240/3 = 80 threads.

8. Edit the pi hybrid symm.sh bat
h �le to use our desired parameters. Set MIC PPN to

3 (3 pro
esses per MIC), and MIC OMP NUM THREADS to 80. Re-submit modi�ed bat
h

�le, and
he
k the results.

login$ sbat
h pi_hybrid_symm.sh

at slurm-920136.out

Running on CPU and MIC

TACC: Starting up job 920136

TACC: Starting parallel tasks...

/opt/apps/intel13/impi/4.1.0.030/intel64/bin/mpiexe
.hydra -ifa
e br0

-
onfigfile /home1/01871/apb18/.slurm/
onfig_file.920136.mL8b4EHT

My rank is: 0/4 host
557-402.stampede.ta

.utexas.edu

Cornell Center for Advan
ed Computing 9

0: Integrating samples 1 to 125250000000

My rank is: 1/4 host
557-402-mi
0.stampede.ta

.utexas.edu

My rank is: 2/4 host
557-402-mi
0.stampede.ta

.utexas.edu

2: Integrating samples 250500000001 to 375750000000

1: Integrating samples 125250000001 to 250500000000

My rank is: 3/4 host
557-402-mi
0.stampede.ta

.utexas.edu

3: Integrating samples 375750000001 to 501000000000

0�
557-402.stampede.ta

.utexas.edu DONE 28s

2�
557-402-mi
0.stampede.ta

.utexas.edu DONE 31s

1�
557-402-mi
0.stampede.ta

.utexas.edu DONE 31s

3�
557-402-mi
0.stampede.ta

.utexas.edu DONE 31s

The value of pi is: 3.14159265

TACC: Shutdown
omplete. Exiting.

real 0m33.129s

user 7m33.571s

sys 0m0.373s

Mu
h better! For
omparison, running on MIC only took 43 se
onds, and a naively

balan
ed symmetri
 job took 57. We see almost a twofold improvement in symmetri

performan
e simply by intelligently balan
ing the workload so that the
opro
essors

and CPUs are both utilized 100% for the duration of the
omputation. Now that

we've found parameters that make e�e
tive use of a single node, we
an apply the

same parameters when running our job on multiple nodes.

9. Lastly, modify the s
ript to run on three nodes, and re-run. Verify that work is assigned

to three separate nodes by looking at the output. For
onvenien
e, you
an use the

following
ommand to sift through the results and produ
e an easily interpretable

output. It will print all unique hostnames.

at slurm-920610.out | grep rank | awk '{print $6}' | sort | uniq

� Remember, SLURM parameters determine the number of nodes and the distri-

bution of CPU pro
esses. You will need to pi
k appropriate values for -n and -N

in order to allo
ate the
orre
t number of nodes, and make sure that only one

CPU pro
ess is running on ea
h node.

Cornell Center for Advan
ed Computing 10

