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We have examined the recent solution of the Fock expansion through O(r?) for the ground state of
the helium atom and have verified that it correctly treats the discontinuity in the local energy charac-
teristic of the triple-collision point. We have also developed an exponential representation of the Fock
expansion that satisfies Kato’s cusp conditions for two-particle collisions even when the expansion is

truncated at a finite order.

PACS number(s): 31.10.+2, 31.15.4+q, 31.20.Di

I. INTRODUCTION

Eigenfunctions of Hamiltonians for atomic and molec-
ular systems exhibit singular behavior at those points in
configuration space where two or more charged particles
come together and the resulting potential becomes
infinite. At two-particle coalescences, derivatives of the
wave function W with respect to Cartesian coordinates
have a discontinuity characterized by the famous Kato
cusp conditions [1], and the inclusion of functions with
such cusps in trial wave functions has been shown to im-
prove dramatically the rates of convergence of Rayleigh-
Ritz variational calculations [2]. There are also singulari-
ties involving more than two particles, such as the triple-
collision singularity in the helium atom, when both elec-
trons simultaneously approach the nucleus. A formal ex-
pansion in powers of the hyperradius 7 and its logarithm
Inr about this singular point was proposed by Fock [3]
over 35 years ago for helium atom S-state wave functions.
Subsequently, much effort has been devoted to under-
standing this expansion [4]. The O(r°), O(r!), and
O (r? Inr) terms in Fock’s expansion are easy to obtain
analytically, but it is only recently that the O (r?) term in
the expansion has been obtained in closed form by
Maslen and co-workers, through the extensive use of
computer algebra [5]. We have examined their result,
and have verified that the inclusion of this term in the ex-
pansion yields a continuous local energy, whereas the lo-
cal energy is finite but discontinuous at » =0 if the term
is omitted. Although the conventional Fock expansion
truncated at O(r") fails to obey the two-particle cusp
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conditions, we have discovered an exponential represen-
tation of the Fock expansion that not only preserves the
correct three-particle singularity, but also exactly obeys
the two-particle Kato cusp conditions even when the ex-
pansion is truncated at finite order.

II. NONANALYTICITIES
IN ELECTRONIC WAVE FUNCTIONS

A. Two-particle cusps

A brief review of two-particle cusps in electronic wave
functions is appropriate. Two-particle cusps arise be-
cause the Coulomb interaction between charged particles
diverges as they approach each other. As a result, there
must exist a compensating divergence in the kinetic ener-
gy such that the sum of kinetic and potential energies is
finite; this divergence is manifested as a cusp in the elec-
tronic wave function at zero interparticle separation.

The true wave function must satisfy a set of “‘cusp con-
ditions” which prescribe the proper derivative discon-
tinuity at the collision points. Kato [1] first rigorously
derived these conditions as a general property of Coulom-
bic systems, arriving at the conclusion that in the limit
that two particles of masses m; and m; and charges g;
and g; approach each other and all other interparticle
distances remain larger than zero,

v
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where p;;=m;m;/(m;+m)) is the reduced mass of the
two-particle subsystem and ¥ is the average of ¥ over an
infinitesimally small sphere centered at r;=0. Pack and
Byers-Brown [6] generalized Kato’s result by solving the
multiparticle Schrodinger equation in the neighborhood
of a two-particle coalescence. Near such a collision, the
problem reduces to one similar to that for a hydrogenic

atom. Writing the wave function near such a collision as

I 1
Y= E 2 rlflm(r)Ylm(e"b) ’ (2)
I=0m=—1
where r =r;, 0=0,;, $=¢,; for the collision point r; =0,
and the Y;"(0,¢) are the usual spherical harmonics, they
find

q9i9;Hij 2
i1 r+0(r?)

Fim(D=f12 3)

with f {0) being the first term
Fim (1= ZE=o finr~.

Equatlons (2) and (3) are perhaps best understood if we
consider the solution 9, of the hydrogenic ion (¢, = —Z,

in the expansion

q,=1, pu,=p), which can be written as
W ~rl |1=LZ L 0:2) |Yre,) , @)
1+1
implying that
v
arH ~[P T —pZr O (P T Y6, 8) . (5)

For S states, 0¥y /0r=—2ZW¥(0), without the need to
spherically average (although a spherical average of Y9
does not alter this). For P states, d¥Wy/dr ~ YT (0,¢),
which is nonzero, but which averages to zero around the
sphere, in accordance with Kato s cusp condition. For
states with [>1, dWy/dr~Ir'"!, which vanishes as
r—0, as does the wave function. In all cases, the hydro-
genic wave function has the general form of Eq. (3), with
the proper derivative discontinuity as specified by Eq. (1).

The general result of Pack and Byers-Brown is
achieved by requiring those terms that diverge in the lim-
it r;—0 to cancel. For S states of a two-electron atom,
such a process can be done trivially by writing the (nonre-
lativistic, infinite nuclear mass) Hamiltonian of the atom
in interparticle coordinates (7, 75, and r,):

2 2
pe-l[2 2, 28 20
ar?  ar? dr2, ry Ory r, 0r,
r2—ri4¢? 2
+_4_ a + 1 2 12 d
rip Ory, ISTaV) aryry,
r2—r2 42 2
L2 1 12 d
181 aryryy
+ | £y =2, 1 6)
ry ) T2

The second derivatives of ¥ are all bounded, as in hydro-

MYERS, UMRIGAR, SETHNA, AND MORGAN 44

gen, so in the limit of a two-particle collision, there are
two terms in the Schrodinger equation that diverge. By
requiring them to cancel, we arrive at a set of cusp condi-
tions for a singlet S state of a two-electron atom, which
are valid without the need for spherically averaging. One
condition describes the collision of one electron and the
nucleus, and the other, the collision of two (opposite-spin)
electrons [7]:

v =—ZWY(r;=0), electron and nucleus
ar; |r,=0
~ (7
E?T\l’ =3¥(r;=0), electron(1) and electron(l) .
goniT

The study of singular points requires a local measure of
the quality of a wave function. It is useful to define the
local energy E,,. of an N-electron wave function ¥ at a
point r in the 3N-dimensional configuration space of the
electrons as

H \I/(r)

EIOC( ) \I’(r) (8)
For the true ground-state wave function (and for any
eigenstate of the Hamiltonian), throughout the entire
configuration space this quantity has a constant value E,
the energy of the eigenstate. Deviations from constant
local energy E signify an error in the trial wave function
in that region of configuration space. Nonanalytic devia-
tions from a constant local energy are characteristic of
electronic wave functions which do not treat two- and/or
multiparticle collisions properly. For two-particle col-
lisions, a trial wave function that fails to obey the cusp
conditions [Eqgs. (7)] will suffer a diverging local energy
when the two particles approach each other. Of course,
this diverging local energy is not fatal, since the region of
configuration space where the cusp dominates is very
small; on the contrary, very accurate energies can be at-
tained with single-particle orbitals. But the misrepresen-
tation of the cusp hampers the rapid convergence of vari-
ational calculations using smooth basis functions, and
thus can become a bottleneck in sufficiently large calcula-
tions.

B. Three-particle nonanalyticity

In 1935, Bartlett, Gibbons, and Dunn [8] realized that
a power series in r,, r,, and r;, was incapable of satisfy-
ing the Schrodinger equation for the ground state of the
helium atom because of a singularity associated with the
coalescence of all three particles, and in 1937 Bartlett [9],
building on the work of Gronwall [10], suggested that a
generalized power series including logarithmic terms
might solve the Schrodinger equation. In 1954 Fock (3]
independently constructed a formal expansion of the heli-
um atom ground state involving logarithmic terms which
treated the three-particle singularity, and which he
proved was capable of solving the Schrodinger equation.

Before introducing the Fock expansion, we first discuss
the symptoms of this three-particle singularity in terms of
the local energy. Specifically, we describe the behavior of
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the local energy for a simple trial wave function which
contains the prescribed two-particle cusps but which has
no extra nonanalytic terms to represent the three-particle
singularity at the nucleus.

Consider the two terms in the Hamiltonian [Eq. (6)] in-
volving mixed partial derivatives of ¥. The terms multi-
plying these derivatives are independent of length; they
are simply twice the cosines of the angles 6, and 0,, re-
spectively, as shown in Fig. 1. Hence these terms are well
defined in the limit that the triangle formed by the three
particles is shrunk uniformly toward the nucleus, and the
Hamiltonian depends on the shape of the triangle even as
the size of the triangle is taken to zero.

To show that this shape dependence will produce a
singularity in the local energy at the triple collision, we
must show that the mixed partial derivatives which mul-
tiply the cosines are nonzero in the limit under considera-
tion. Consider a simple trial wave function that has the
proper two-particle cusps but which does not treat the
three-particle singularity. One can easily verify that the
following wave function satisfies Egs. (7):

W(ry,ry,rp)=exp[—Z(r;+ry))+31r,]. 9)

Evaluating the mixed partial derivatives in the limit in
question, we find

2y
or 7,

v
r1=r12=0 ar2r12

=—1Z¥(0),

ry=r;p=0

(10)

where W(0)=W¥(r,=r,=r;;=0) is nonzero (and pos-
itive) for the ground state of the system [11]. For the
wave function (9), E,.=—(Z>+1)+(Z/2)cosb,
+(Z /2)cos 6,, so the local energy is clearly not well
defined in the triple-collision limit, but depends upon the
shape of the triangle through the angles 6; and 6,.
Therefore, for this trial wave function which treats two-
particle collisions but does nothing about the triple col-
lision, there exists a finite discontinuity in the local energy
at the origin. The variation in the cosine terms yields a
full variation in the local energy of magnitude Z. While
Eq. (10) is not intended as a rigorous proof (particularly
with regard to taking the limits in question for arbitrary
analytic functions of r,, r,, and r,,), it is evident that

FIG. 1. Interparticle coordinates and associated angles for
helium atom [nucleus and two electrons (1,2)].
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most trial wave functions that are analytic in the inter-
particle coordinates and satisfy the two-particle cusp con-
ditions will similarly exhibit a discontinuity in the local
energy of magnitude Z.

We graphically demonstrate this discontinuity by cal-
culating the local energy around a circle in configuration
space surrounding the nucleus and shrinking that circle
to zero. Consider a geometry in which one electron sits
fixed near the origin at a distance R /2, while the other
electron travels around a circle of radius R, as shown in
Fig. 2. In Fig. 3, we plot the error in the local energy
(AE\,,=E,,.—E) as a function of the angle 0 for various
radii R of an optimized trial wave function [12] which
possesses the required two-particle cusps but which con-
tains no extra nonanalytic terms. As can be seen, AE,
varies over a range of Z (=2) as the radius of the circle is
shrunk to zero. Hence AE| . is not well defined at the
triple-collision limit, but can be anywhere in that range.

It is clear that the finite discontinuity associated with
the triple-collision point is not as severe as the diverging
local energy associated with two-particle collisions (for
trial wave functions lacking the proper cusps). Further-
more, since the triple-collision point is an isolated singu-
larity which occurs in a region of configuration space
whose contribution to the total integrated energy is
severely depressed by a factor of #° in the Jacobian in hy-
perspherical coordinates, the failure to include the proper
terms does not necessarily prevent one from calculating
highly accurate energies for the helium atom ground
state [13,14]. But just as a proper description of two-
particle cusps has been shown to improve dramatically
convergence in variational calculations by not requiring
smooth basis functions to fit singular functions, it has
been demonstrated that the inclusion of variational de-
grees of freedom reminiscent of terms in the Fock expan-
sion also significantly enhances convergence [15,16]. We
have been motivated by a desire to construct more accu-
rate wave functions by representing the singular behavior
of those functions exactly, and more generally, to under-
stand to what extent singularities dictate the overall be-
havior of electronic wave functions.

FIG. 2. Geometry for plots of local energy, to show discon-
tinuity as R —0. Inner electron is at a distance R /2 from the
nucleus.
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N pieces. His expansion (modified to reflect the altered hy-
! ! . perspherical coordinate) about » =0 is
] © [k/2]
1 Y(r,a,0)= 3 3 riinrPy, ,(a,6), (12)
R=10°] k=0 p=0

0.0 0.5 1.0 1.5 2.0
0 (units of )

FIG. 3. Error in the local energy AE) . of a trial wave func-
tion as a function of @ for various radii R, for the geometry
specified in Fig. 2. The curves are labeled by the value of R (in
a.u.) for that plot. The wave function used here is an optimized
variational wave function containing two-particle cusps but in-
cluding no extra nonanalytic terms to treat the three-particle
singularity. The variation of magnitude Z (=2) around the cir-
cle as the radius R —0 is symptomatic of a wave function which
satisfies the cusp conditions but does not successfully treat the
triple collision.

III. FOCK’S EXPANSION

A. Introduction

Because in the limit of the three-particle collision all
the interparticle coordinates vanish, it is useful to trans-
form to a set of hyperspherical coordinates, in which the
desired limit involves only a single vanishing coordinate.
In this coordinate system, which differs slightly from
Fock’s original hyperspherical system,

172
r= [r%—f—r% ,
a=2tan" '(ry/r|), (1n
24,22
. ritr;—ri, o
6=cos 2 =0,,=r1'1,/1r 75 .
rrs

This transformation reflects a separation of the six-
dimensional configuration space of the two electrons into
a one-dimensional hyperradial part (r) and a five-
dimensional hyperangular piece, of which a and 6
comprise two coordinates [the other three consisting of
“external coordinates” (Euler angles) describing the
orientation of the triangle, in which the wave function is
constant for an S state]. This system is useful for a study
of the triple-collision point since the limit in question is
simply »—0. The overall size of the triangle is described
by the hyperradius 7, and its shape by the hyperangles.
Fock’s ansatz for an S state of the helium atom makes
use of the separation into hyperradial and hyperangular

where the upper limit [k /2] on the second summation
denotes the largest integer which does not exceed k /2.
Substituting the expansion into the Schrodinger equation
yields a partial differential recurrence relation for the hy-
perangular functions ¥, ,(a,0):

[A2=k(k +8)1, , = 2(k +2)(p + 1)y, 4
+(p +1)(p +2)¢'k,p+2
—2V iy, +2EY,, , (13)

where A? is the generalized angular momentum operator.
Fock proved that it is possible in principle to find all the
¥y p(a,0) to achieve a full solution, although actual pro-
gress in solving for terms in the series has been painfully
slow.

Examination of the recurrence relation (13) reveals that
only the first four terms of the series, ¥+ o7
+1//;,_’1r2 lnr+¢2’0r2, are needed to correct the singular
behavior at the origin. g o, ¥, and ¥, | were all known
by the late 1950s [3,17], but ¢, , resisted solution until
very recently [5]. The recurrence relation for 1, , is asso-
ciated with terms of O(r°) in the local energy, which ex-
plains why failure to include the proper ¥,  leads to a
finite discontinuity in E .. It also explains why higher-
order terms do not contribute to the local energy at the
origin, since they come in as higher powers of », which
vanish as r —0.

The Fock expansion should provide a formal solution
to the two-electron Schrodinger equation, but by itself
says nothing about satisfying the boundary condition of
normalizability. There are, however, in addition to the
infinite set of hyperangular functions ¥, ,, an infinite set
of harmonic polynomials ¥, ; which can be added in arbi-
trary amounts to ¥ without changing the local energy at
any point in space. The coefficients for these harmonic
polynomials, a; ;, are not determined by the Schrodinger
equation but by the boundary conditions of the normal-
izability of the wave function. To second order in r, there
are two such harmonic polynomials (Y, and Y, ;), and
hence two arbitrary coefficients (a,, and a, ;). a,, is
identically zero for the ground state of helium by the re-
quired exchange symmetry of the spatial part of the wave
function, but Y, is allowed by symmetry; hence a,
cannot be deduced from the local behavior of the
Schrodinger equation near the nucleus. We note, howev-
er, that in work to be described elsewhere [18], we have
been able to compare the exact result [5] for ¥, , quoted
below with highly precise variational calculations to
determine an accurate estimate of a, ;.

The work of Maslen, Abbott, Gottschalk, and Mclsaac
[5] is impressive both in its accomplishments and its in-
novative use of symbolic algebra. The central part of
their work for this project was the successful reduction of
1,0 to a finite set of terms. This result is still quite com-
plicated, involving some special functions. We present

—Lp
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here an expression equivalent to the result of Gottschalk
and Maslen [19] for the single S state (labeled nsms 1S on
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eters (py,1p f1p 1 4,15) the values of those parameters for
a two-electron atom. The result is written in terms of 7,

p.- 2796 of their paper); we have only reordered certain ¥y, and ry;, but is equivalent to o+ or
terms and substituted for their general Coulombic param- +, 7 %Inr +yorita, Yy
J
— rytr,t+r
W(ry ryrp)=1—Z(ry+ry)+Lr,— |—’T 2 \zy,, lnr—%Yzyl In |~ 2 ]
y4
+EY2,0 2In(ry—ry+r;)— S
+ér12(2r2—r%2)1/2[2sin_1(yﬂ)+rr]
2
—%r2+ i%tlvr%z —%rlz(r1 +r2)+—Z£’£jj—)rlr2 +a,1Y,, (ry>r;) (14)

where

sy=In[r;,(2r2=r3 )2 4,2 —427],

s,=aln % —Bf ln[rl2(2r2—rf2)1/2+r%—r%]—ln[r12(2r2—r%2)1/2-—r%+r%]}
[O‘_—E _7 |e*B T—a+B |_, |m7—a—P
+2|L > L > +L > L > y

L(x)=— fox In|cost|dt (the Lobachevsky function) ,

—,2_,2
Yy,o=ri—ri,

Y, =ri+ri—r},=r,sinacosé,

r=(r%+r§)1/2 ,

. 2ryry
y= sm(a)=r%—+r% ,
Q=cos b,
B=sin"l(yQ) .

B. Fock’s expansion to O (r2)

We have examined the Fock expansion to O(r?) [Eq.
(14), henceforth referred to as ¥'?’] and have verified that
it eliminates the discontinuity in the local energy at the
origin which is symptomatic of trial functions which lack
the correct analytic structure at the triple-collision singu-
larity. Figure 4 consists of a series of plots similar to
those in Fig. 3 (AE . vs 0 around a circle of radius R),
this time for ¥'?). As a triangle is shrunk toward the ori-
gin, the error in the local energy vanishes, demonstrating
that the second-order Fock expansion does indeed
represent the three-particle singularity exactly.

Unfortunately, as can be seen in Fig. 4, ¥'?) describes
the true wave function only very close to the nucleus, and
has a large local energy error as r increases. Further-
more, higher-order terms in the expansion are even more

[

complicated and difficult to solve for. (At any order in
the expansion, there are some terms that can be solved
for relatively easily, such as 1/13,1r3 Inr. We have put this
term into a trial wave function and have seen that the re-

11||;|1|1151|:|1
I T I

0.0 0.5 1.0 1.5 2.0
6 (units of )

FIG. 4. Error in the local energy AE,,. of the second-order
Fock expansion [Eq. (14) in text] as a function of 6 for various
radii R, for the geometry specified in Fig. 2. The curves are la-
beled by the value of R (in a.u.) for that plot. The fact that the
variation in AE,,, around the circle vanishes as the radius R —0
indicates that the second-order Fock terms have successfully
treated the three-particle singularity at the origin.
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sulting function is better behaved at longer distances.
But at every order, there will be terms at least as compli-
cated as 9, . The third-order term ¢; ; has been report-
ed [20], but we have opted not to include this term since
it has not been completely reduced to closed form.) ¥
itself diverges quadratically at long distances, so it obvi-
ously cannot represent the true wave function every-
where. Therefore the question arises as to how to incorp-
orate this asymptotic result into a wave function valid
over all of configuration space.

IV. EXPONENTIATION OF THE FOCK EXPANSION

The Fock expansion, if solved to infinite order in r,
should have the correct two-particle cusps (for r5<0) as
well as the exact three-particle singularity which it was
originally constructed to treat. Unfortunately, if the ex-
pansion is known only to some finite order in r, the re-
sulting approximate wave function will not have the
proper cusps and will hence suffer a diverging local ener-
gy at two-particle coalescences. We demonstrate this by
substituting into the Schrodinger equation a Fock-like ex-
pansion for ¥: W=1+¢,+¢,+ - = 3 2_¥,, where
¥, consists of terms exclusively of O (r") and O (r"Inr),

in the manner of the Fock expansion. Writing
V2=V3+V3, the Schrédinger equation becomes
3 (=3V, + Ve, —Ey,)=0, (15)

n=0

which, upon equating terms order by order in #, yields

— 1Y% 12+ Vi 11 —Eh, =0 . (16)

The error in the local energy for the Fock expansion
truncated at order N is

N
S (—ivy, +Vy,—EY,)

AEN === = , (17
2 U
n=0
which from Eq. (16) reduces to
Vy—E(Wpy_+y)
= VN BN TN (18)

N

2 ¥

n=0

If we were dealing with a hydrogenic ion, for example, in
its ground state with W(r)=e ~ %" and

_(=z) ,
n! g

Yu(r) , (19)
then for a given truncation order N, Vi would be of
O(r¥~!) and hence AE{Y) would be well behaved at
r =0. For a multiparticle system, however, the right-
hand side (rhs) of Eq. (18) is typically singular. For ex-
ample, with
V:'—Z(l/r]+1/r2)+1/r12 (20)

and
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4
hy=—Z(ri+ry))+ir,, (21)
we have, for N =1
r r
Vi, = Z> 2+—2+—'}
ry T
1 1 1
—Z | |—+— |drpt+rtr)— | +1,
[ P Lrpt+(r rz)ru] 5
(22)

which because of the cross terms is singular at any two-
particle coalescence. This would also be true even if the
r,-dependent terms were absent from ¥V and hence from
¥;. The fundamental problem is that for any finite N, the
Fock expansion through Nth-order of the product of two

hydrogenic eigenfunctions e “1e” %2 is not the same as
the product of the Nth-order expansions of each function
in powers of r; and r,, although for any given pair of
coordinates (r;, r,) the two would tend to each other as
N-— . In other words, the form of ¢, involving a
weighted sum of interparticle distances does not naturally
mesh with the product form of the true wave function.

The functional form of the two-particle cusp condi-
tions, which state that certain derivatives of the wave
function are proportional to the wave function, suggests
that the true wave function has some sort of exponential
character. We first noticed that the first-order Fock ex-
pansion W'V=1—Z(r;+r,)+1r,, does not have the
proper two-particle cusps away from r =0, whereas the
exponential form of the function ®'V=exp[—2Z(r,
+r,)+1ry,] (subtracting the leading 1'since that term is
generated upon exponentiation) does indeed satisfy the
cusp conditions (7) everywhere in space [21]. We then
hypothesized that an exponential form of the Fock ex-
pansion to second order would also have the correct
cusps. So we considered the following wave function,
which, upon expansion of the exponential, is seen to
reproduce the Fock expansion to second order in 7:

<I>(2’=exp(¢,,0r+¢v2,1r2 lnr+¢2‘0r2+a2’1 Yy _%d’%,o"z) .
(23)

A straightforward algebraic evaluation of the cusp condi-
tions (7) confirms that this exponentiated wave function
has a local energy which is well behaved at two-particle
collisions, despite the fact that the truncated second-
order power series has a diverging local energy at those
points. As illustrated in Fig. 5, the unexponentiated
function W'?) is seen to have a diverging local energy at a
two-particle collision (at x, =0 in the figure), whereas the
local energy of the exponential function ®? is well
behaved.

By using more formal methods, we can extend this
statement concerning the exponentiated second-order
Fock expansion, which we are able to evaluate explicitly,
to arbitrarily high order: the ‘“exponentiated Nth-order
Fock expansion ®¥ [an exponential of the Fock expan-
sion to O(r") plus additional terms to ensure that the
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FIG. 5. Comparison of the local energy of the unexponentiat-
ed (¥'?) and the exponentiated (®?) second-order Fock expan-
sions, in the neighborhood of a two-electron collision. One elec-
tron is fixed at (x; y;,z;)=(0.0,0.005,0.0), while the second
electron moves through it along the segment from
(x2,52,2,)=(—0.001,0.005,0.0) to (+0.001,0.005,0.0). The
collision is therefore situated at x, =0. The unexponentiated
function is seen to have a local energy which diverges at the col-
lision, whereas the local energy of the exponentiated function is
roughly constant throughout the region.

Fock expansion is reproduced through O (#%)] has a local
energy that is well behaved in the limit of two-particle
collisions, even though the underlying Fock expansion
has a diverging local energy at such points for finite order
N.

We now prove this claim. Substitution of ¥=exp(¢)
into the Schrodinger equation yields for ¢ the Ricatti
equation

—1[(V?$)+(V$)*]+V —E=0. (24)

Now expand ¢= 372 ,4,, where ¢, is a function of
O(r",r*1In’r), and which, in our approach, is a sum of
the nth-order Fock term and appropriate products of
lower-order Fock terms. Then, by substituting ¢ into the
Schrodinger equation and equating terms order by order
as before, we find

n—1
—% V2, + 3 V6V, |+V, —EB,,=0. (25

i=1

The singular potential term ¥, being homogeneous of de-
gree —1 in the hyperradius, now appears only at first or-
der in this expansion. Hence the exponentiated first-
order Fock expansion contains all of the required cusps.
As a result, the error in the local energy for a wave func-
tion truncated at order N =2 is

2N N
> 3 V¢;Ve,_—Ebdy,. (26)

n=N+1li=n—N

AE(N)=—i

loc 2
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All the V¢, can be shown to be nonsingular (see the Ap-
pendix), so AE{Y) is likewise nonsingular, even at two-
particle collisions. This argument is generalizable to the
case of an arbitrary number of particles of arbitrary
masses and charges interacting by Coulombic forces.

The exponentiated second-order function has all the
singularities (two- and three-particle) required for a two-
electron atom ground state. The fact that the truncated
Fock expansion does not have the proper two-particle
cusps while the full Fock expansion does implies that
there is an intricate cancellation of terms out to infinite
order; this cancellation is evident in the preceding discus-
sion of the truncated Fock expansion. We suspect that
much of the power series in the original Fock expansion
is devoted to performing this delicate cancellation so as
to generate a wave function of exponential character. As
a result, further progress could perhaps be made in solv-
ing for terms in the Fock expansion by making an ex-
ponential ansatz such as the one we have made. Such an
ansatz might raise new algebraic complications, but is
worth further consideration.

V. INCORPORATING THE FOCK EXPANSION
INTO TRIAL WAVE FUNCTIONS

The early work of Frankowski and Pekeris [15] and the
more recent work of Freund, Huxtable, and Morgan [16]
and others [22] demonstrate clearly that the inclusion of
logarithmic terms in the basis improves significantly the
rate of convergence of a Rayleigh-Ritz variational calcu-
lation. Furthermore, by comparing the coefficients of
variational terms obtained by Baker and Morgan [22] and
the coefficients of the corresponding terms in an ap-
propriate expansion of the exact second-order result [Eq.
(14)], we can show that the variational degrees of freedom
are indeed mimicking the exact Fock wave function [18].
Therefore, including the Fock expansion, or some ap-
proximation to it, appears to be extremely useful for
highly accurate calculations.

Since we wish to incorporate the second-order Fock
expansion into a trial function exactly, it is clear that, due
to the complications of integrating the necessary func-
tions, a standard basis set calculation such as those of
Refs. [15] and [16] is not possible. Instead, we have
sought to incorporate the exact second-order result into a
variational Monte Carlo technique developed by one of
us, and described elsewhere in the literature [23]. More
details regarding this incorporation will be given below.

A useful diagnostic for trial wave functions is to plot,
as a function of the hyperradius r, the error in the local
energy for various hyperangular configurations, i.e.,
configurations with fixed a and 6. The solid curves in
Fig. 6 show such a plot for the exponentiated second-
order Fock expansion ®?); we have selected two
geometries with local energies which more or less bound
the distribution of local energies at small » (r <0.2).
There are no variational parameters in this wave func-
tion; we have fixed the arbitrary coefficient a,; to the
value that we determine from our comparison of the
second-order terms in the exact wave function and those
in a highly accurate variational wave function [18]. The
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fact that AE,,,—O0 as r—O0 is again indication that the
second-order Fock expansion is correctly representing
the triple-collision singularity.

We note that AE for the exponentiated second-order
function (solid curves in Fig. 6) grows rapidly as r is in-
creased away from zero. From the analysis of Sec. IV [in
particular, Eq. (26)], we can see that the error in the local
energy for the exponentiated Fock expansion behaves at
small r as r¥ ~!1In?r, where N is the order of truncation
and p is the highest logarithmic power which is nonzero
at O(r"). By including the exact Fock expansion to
O (r?) we have driven AE,., to zero at the triple-collision
point, but the error grows rapidly away from » =0 since
AE,, ~rInr, implying that dAE, . /0r is infinite at » =0.
Fortunately, this infinite derivative can be cured since the
leading third-order term in the series, 15,7 lnr, is known
exactly [17]. By including this term as well in a trial
wave function, the leading error in the local energy now
scales as . The dashed curves in Fig. 6 show AE, . for
the incomplete third-order exponential function [incom-
plete since we have not included terms of O (r?)]

DO =Rexp( ¢3’1r3lnr —¥y08,,7°Inr) , @7

for the same pair of hyperangular configurations. We see
that the inclusion of the exact cubic logarithmic term re-
sults in a finite rather than infinite slope in the local ener-
gy error.

We note also that for both the second-order and in-
complete third-order functions the local energy error is
quite substantial at large » (and continues to deviate more
at even larger 7). Such deviations are not surprising,

1.0 Fr—

llll[lll||llll[1ll

05—

0.0

-0.5

AE,,, (a.u.)
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FIG. 6. Error in the local energy for the exponentiated
second-order Fock wave function ®?’ (solid curves) and the in-
complete exponentiated third-order function ®‘>! (dashed
curves) as a function of the hyperradius r for a fixed pair of
hyperangular configurations: (a,0)=(2tan"'(1),0);
(a,0)=(2tan"'({),7). The second-order function has a local
energy which grows with an infinite slope away from r =0,
while the inclusion of the cubic logarithmic term ;Inr
reduces the infinite slope at the origin to a finite slope.
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given that we have included only low-order terms in r.
Even though we have remedied, through exponentiation,
some of the problems associated with only having the
first few terms of the series, exponentiation does not cure
these problems fully. Nevertheless, the second- and
third-order terms can be reigned in, to some extent,
through appropriate cutoff functions at larger distances
which mimic the effect of higher-order Fock terms that
we have not included in our wave function.

Consider the lowest-order logarithmic term wz,lrzlnr.
In the infinite-order Fock expansion, this term would be
appropriately canceled by higher-order terms, but in an
approximate trial wave function, there is an unphysical
behavior associated with the logarithm changing sign at
r =1. This behavior can be effectively suppressed with a
term that is proportional to 7> for small 7 (hence leaving
the second-order terms untouched), but which is propor-
tional to r’Inr at larger distances and cancels ¢, ,r*Inr.
This is the role of the term involving the exponential in-
tegral (Ei) function reported by Gottschalk, Abbott, and
Maslen in Ref. [5]; we have achieved equivalent cutoffs
using similar logarithmic functions, although we have not
yet discovered an optimal logarithmic cutoff function.
Further investigation reveals that more complicated poly-
logarithmic terms may be appropriate at higher orders
[24].

In general, we have envisioned a matched asymptotic
expansion smoothly interpolating between the small-#
and large-r asymptotic wave functions, but such an ex-
pansion has not yet been constructed. More approxi-
mately, we can scale the quadratic terms in the exponen-
tial so that they behave linearly at large r. Such a linear
exponential falloff is appropriate for atomic wave func-
tions.

Even though we can construct accurate wave functions
with very few variational degrees of freedom, the energies
for these wave functions are still not as accurate as those
calculated with large variational wave functions. Hence
we have sought to supplement the exact Fock result with
an appropriate trial function; specifically, we envision the
exponentiated second-order Fock wave function as a
complicated correlation term containing all the required
singularities in the problem. While these calculations
have yet to produce better total energies, we do not see
this as a failure of the Fock expansion. Rather, we need
to determine how the truncated exponential wave func-
tion is failing to reproduce the true wave function at
larger distances, and find appropriate trial functions to
remedy this.

VI. CONCLUSIONS

We have examined the recent solution of the O (r?)
term of the Fock expansion and have verified empirically
that it cures the finite discontinuity in the local energy
that is symptomatic of wave functions which include
two-particle but not three-particle nonanalytic terms.
Given that the Fock expansion is a power series, howev-
er, we have realized that an approximate truncated Fock
expansion does not have the proper two-particle cusps
away from r =0. We have therefore constructed an alter-
nate exponential representation of the truncated Fock ex-
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pansion which does indeed have the correct cusps over all
of space. This result suggests the extent to which the
original Fock expansion is combining terms at all orders
in the hyperradius in order to achieve an exponential
wave function. We believe that this work will eventually
help to yield significantly better energies than other trial
functions with the same number of variational parame-
ters, and could be important in other applications where
an accurate representation of the wave function near the
nucleus is of the utmost importance.
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APPENDIX

Our proof that all higher terms ¢,, with n =2, in the
exponentiated Fock expansion are uniformly continuous
and have uniformly continuous first derivatives on any
compact set depends critically on the following well-
known properties of harmonic functions.

Definition. A function f: RP?—R is said to be harmon-
ic in a region G C R P if it obeys Laplace’s equation:

—V2f=0 for all rEG . (A1)

Theorem 1. If a function f is harmonic in a region G,
then on any compact subset of G, f is uniformly continu-
ous and has uniformly continuous derivatives to all or-
ders.

We also use an appropriate multidimensional generali-
zation of a key theorem [25] of potential theory.

Theorem 2. Suppose g (r) is bounded and integrable in
aregion G. Then

(D /2) g(r')
(D _2)27TD/2 |r_rr|D-2 ’

and its first derivatives with respect to Cartesian coordi-
nates are everywhere uniformly continuous (the deriva-
tives are obtained by differentiating under the integral
sign), and u(r) is a particular solution of Poisson’s equa-
tion —V2f =g.

Theorems 1 and 2 can be combined to yield the follow-
ing.

Theorem 3. Under the hypotheses of Theorem 2 on g,
any solution of

—Vif=g

obeys the continuity conditions of u in the conclusions of
Theorem 2.

The proof of Theorem 3 is straightforward, since given
any solution f,

u(n)=[ d°r (A2)

(A3)
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—Vif—u)=g—g=0, (A4)

so on any region G, f —u is harmonic. Then by Theorem
1, f =(f —u)+u has the same continuity properties as u.

Now we commence our proof. The differential equa-
tion (25) obeyed by ¢,, can be written as

n—1
—V,= 3 V¢;'V$, ;—2V8, +2ES,, .

(A5)
i=1

Thus for n =0,

—V%$,=0, (A6)
of which the solution homogeneous of degree O is simply

¢do=const , (A7)
so that

Véo=0 . (A8)
For n =1, we have

— V2%, =—2V=—2 —£—£+L} . (A9

Fp ry TIp

One particular solution of this equation is

o1 =—Z(ri+ry))+1ir,, (A10)
whose six-dimensional gradient

Vo, =—Z(T,T,))+1(T5,Ty) (A11)

is clearly bounded. All other solutions of the differential
equation (A9) that are homogeneous of degree 1 differ
from this particular solution by a harmonic function
which is homogeneous of degree 1, i.e., a linear multino-
mial of the Cartesian coordinates. The requirement that
for an S state 1 and hence ¢ be invariant under inversion
constrains this linear multinomial to vanish.
The differential equation for ¢, is

—V’$,=V¢,-V¢,+2E

=2Z°+1—Z((& —1,) %) +2E , (A12)
whose rhs is uniformly bounded but not continuous at
r;=0 or r,=0. Except along these hyperplanes, howev-
er, it is piecewise continuous. Hence the theorems of po-
tential theory are immediately applicable and we con-
clude that ¢, and V¢, are uniformly continuous and
hence uniformly bounded on any compact subset of any
region G.

The proof for higher ¢, now proceeds by induction.
For n =3 the differential equation for ¢, is

n—1
—V,= 3 V¢;-Vo,_, . (A13)

i=1
Under the hypothesis that on any compact subset of G,
Vé,,...,V¢,_,, are all uniformly bounded (and hence
integrable), the rhs of Eq. (A13) clearly obeys the hy-
pothesis of the theorem of potential theory, so we con-
clude that ¢, and V¢, are uniformly continuous on any
compact subset of G.
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