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We examine a model of rupture propagation on a one-dimensional earthquake fault, focusing both on
the role of small length scales in controlling the dynamics and on the mechanisms by which propagating
modes are selected. In order to obtain a well-defined continuum theory, we add a small amount of
viscous dissipation to a previously studied model in which rupture propagation was controlled by a
finite-difference grid spacing. We find that the dynamically selected rupture mode is one in which nearly
free slip occurs in a pulse whose speed and shape are determined by a novel selection mechanism.
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I. INTRODUCTION

The uniform Burridge-Knopoff (BK) model [1] of an
earthquake fault has recently been shown to exhibit a
rich diversity of dynamic behavior [2—4]. In particular,
Langer and Tang (LT) [4] have demonstrated that the
long-range propagation of sharp rupture fronts typically
associated with large-magnitude events in these models
resembles front propagation into unstable or metastable
states in other dynamical systems [S—11]. LT found two
particularly interesting features of propagating ruptures
in these earthquake models: the existence of a linear
marginal-stability mechanism governing the dynamical
selection of ruptures which propagate into unstable
states, and the dependence of the selected speeds and spa-
tial profiles of the rupture fronts on a short-wavelength
cutoff, without which the dynamics of the system are un-
determined [4]. In this paper, we introduce a related
model with a different small length-scale cutoff, and study
in greater detail the dynamics of rupture propagation in
that model. We find that a novel selection mechanism
governs the dynamical selection of propagating fronts.

The need for a small length-scale cutoff arises from an
instability to the formation of infinitely sharp shock
fronts in fault models with velocity-weakening friction.
In their earlier work, LT chose as the small-scale cutoff a
finite-difference grid spacing used in the numerical in-
tegration of the underlying model partial differential
equation. This length scale arises plausibly from the orig-
inal conception of the BK model as a ‘“block and spring”
model. With such a choice, the selected rupture speed
depends on the grid spacing a in such a way that the ve-
locity v approaches the sound speed ¢ =1 from above as
a—0. Within the framework of continuum elasticity
theory, however, one must address the problem of how to
regularize singularities which develop at small length
scales. Finite-difference grid spacings are one such
choice, but we will examine another here.

In this paper, we introduce a short-wavelength cutoff
which is more natural than the finite-difference grid spac-
ing considered previously. In particular, we add a simple
viscous dissipation to the one-dimensional uniform BK

47

model and investigate the dynamics of propagating rup-
tures. This added term smooths the dynamics on some
viscous length scale, and, with the introduction of such a
scale, the rupture dynamics becomes independent of the
grid spacing a (which always exists in finite-difference in-
tegrations) as long as the smoothing scale is sufficiently
larger than the grid spacing. The resulting model has a
well-defined continuum limit as ¢ —0, and the rupture
dynamics is instead determined by the viscous length
scale. In the manner undertaken previously [4], we per-
form a marginal-stability analysis to determine the propa-
gation speed of ruptures at threshold. Unlike in the pre-
vious work, however, we solve a continuum model of the
dynamics and demonstrate that simulated ruptures (with
both the added viscosity and an wunderlying finite-
difference grid) move in a manner predicted by the con-
tinuum model and independently of the grid spacing a.

In addition to examining the linear marginal-stability
mechanism at threshold (i.e., for the propagation of a
rupture into an unstable state), we investigate the nature
of steady-state solutions for propagation off threshold,
into a metastable state. Whereas there often exists only a
discrete set of steady-state fronts for propagation into a
metastable state (in other systems) [9], we find that the
multivalued static friction which causes ruptures to res-
tick allows a continuum of steady-state propagating solu-
tions off threshold with different velocities, one of which
is selected dynamically.

The larger questions which provide the backdrop for
this paper are these: Under what conditions do steady-
state propagating solutions in various models exist, and
how many solutions are there? What is the spatial char-
acter of such solutions, and what is their stability? (Of
interest to the seismological community, for example, is
whether earthquake slip occurs in a localized <self-
healing” pulse which propagates along the fault [12], or
in a extended manner such that a large region of the fault
ruptures and remains unstuck for a time comparable to
that of the entire event.) Under what conditions is a par-
ticular solution selected dynamically (from, say, a contin-
uum of possible solutions)? How does the character of
propagating ruptures differ among related models? (In
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models of propagating cracks without an unstable
velocity-weakening friction [13], for example, the selec-
tion of modes is quite different.) In this paper, we address
some of these questions within the context of our viscous
one-dimensional model of earthquake faults.

In Sec. II, we briefly review previous work on the one-
dimensional BK model studied in Refs. [2] and [3], focus-
ing on the manner in which the finite-difference grid
spacing a controls the rupture dynamics. Section III con-
tains an extended analysis of the new model with viscosi-
ty. Here, we examine both the linear marginal stability of
threshold propagation and the character of selected
modes off threshold, and we discuss some physical
features of the propagating front that emerges from our
theory. In Sec. IV, we digress somewhat to address the
assumptions we have made regarding viscoelastic
response, and in Sec. V we compare the effects of the
finite-difference and viscous length scales. In Sec. VI we
summarize the paper and describe some open questions.

II. RUPTURE PROPAGATION
IN THE UNIFORM BURRIDGE-KNOPOFF MODEL

We briefly review the results of LT [4] investigating the
nature of rupture propagation in the uniform BK model.
These results provide a useful introduction to the new in-
vestigation described in Sec. III.

We consider initially a partial differential equation
describing the dynamics of a scalar displacement field
u(x,t):

i=u"—(u—A)—¢(u), (1)
where

(_°°1¢max51]’ u=0

d(u)=11—2au, 0<u=1/Qa) (2)
0, u>1/a) .
J
0, #;=0
ii;= ?(uj+l—2uj+uj_1
1
?(uj+1—2uj+ujﬁ1)——uj+1—e, u;>1/(2a) ,

where a is the grid spacing. Let us restrict our attention
to the region at the front of the rupture where slipping is
taking place but where the speeds are small enough that
0<u; <1/(2a), i.e., the second case in Eq. (4). In this
effectively linear regime, solutions of (4) have the form

u;(t)= A(q)explgaj+Qt), (5)

where () is a solution of

02—200+1— %[ cosh(ga)—1]
a

2

~02—2aQ+1—¢*—2-g*+ - =0. (6
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This is the uniform (spatially homogeneous) BK model
studied in Ref. [4], with the single change in notation be-
ing that we have introduced an explicit loading parame-
ter A so that u =0 along the unruptured part of the fault.
Note that, when the friction ¢ is absent, (1) is a massive
wave equation in which the mass—the inverse of some
characteristic length such as the crust depth in the earth-
quake problem—has been scaled to unity, as has the
wave speed. (All rupture velocities are measured in units
of that scaled wave speed.) To simulate a fault loaded
through the motion of tectonic plates, one could make A
a function of time as was done in Ref. [2]. The piecewise
linear friction ¢(# ) is the same as in Ref. [4], but differs
from the other, more smoothly varying nonlinear forms
investigated in Refs. [2] and [3]. The important elements
of the friction are preserved, however, namely the mul-
tivalued sticking force at #=0 and the velocity-
weakening character (for a>0) during slip. The mul-
tivalued static friction allows resticking behind the open
rupture, and the velocity-weakening sliding introduces an
essential instability.

We consider situations in which a rupture propagates
through a region where, initially, % =0. Then, if
A=¢_..=1, the region ahead of the rupture front is un-
stable in that ¢[u(x)]=1 for x ahead of the tip. We
define € as

e=1—A, (3)

so that the threshold case A=1 corresponds to e=0. For
smaller loadings, €>0, the region ahead of the tip is
stable and requires contact with the front to reach the
static friction limit ¢ ,, [14].

In a finite-difference approximation that is appropriate
for numerical studies, Eq. (1) becomes

)—u;+2ai;—€, 0<i;<1/(2a) @

The second, approximate form for (6) is useful for seeing
how the small length scale a enters as the coefficient of a
higher-order term in this dispersion relation.

LT [4] hypothesized that, in the threshold case €e=0,
there exists a continuum of steady-state propagating solu-
tions characterized by different velocities v, and that a
particular propagating mode is selected dynamically by
the linear marginal-stability mechanism. They demon-
strated that the predictions of this hypothesis were con-
sistent with the results of numerical simulations of (4).
This analysis supposes that an exponential rupture front
of the form (5) moves along the x axis at speed —v*, and
that both v* and the associated real spatial growth rate
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g * are determined by the relations

Q(g*)=v*q*, 2 =p*. (7)
99 |g=q*
Equivalently, we can look for a double root of the equa-
tion

2
bzqz—zavq+1—%q4+ coo=0, b =p’—1, (8)

with both g=g¢* and v=v™* positive. Inspection of (8)
shows that such a double root exists only for v*>1 and
a70. In the limit of small q,

1/3

2a | (ot 1+(aa 7, ©)

a2

q*=

so that the front becomes infinitely sharp (¢* — o) and
the propagation speed approaches the sound speed
(v*—1)as a—0.

The analysis of LT for the more general situation with
€>0 was more speculative. The difficulty is that, when
the unruptured part of the fault is not everywhere at the
slipping threshold, an exponential front of the form Eq.
(5) cannot extend indefinitely far into the region ahead of
the rupture but must terminate at some point, also mov-
ing at speed —v, where the transition from sticking to
slipping is taking place [15]. This is not easy to describe
in a finite-difference where the elements (“blocks”) are
discrete and the slipping events occur at some (large) fre-
quency v /a. It is at this point that the advantage of us-
ing a well-defined continuum model becomes particularly
clear. Our investigation of off-threshold mode selection
in the continuum model, to be described in Sec. III B, has
revealed a great deal more about this mechanism than
was apparent in LT. In short, LT seem to have made a
lucky guess. Accordingly, it is best to postpone further
discussion of this mechanism until later in the paper.

III. ONE-DIMENSIONAL MODEL
WITH VISCOSITY

To the continuum equation (1) we add a viscous dissi-
pation of the form nu'":

i=u"—u+A—¢(a)+nu", (10)

where ¢(1) is specified in Eq. (2). The added term nu " is
a one-dimensional Kelvin viscosity that acts to smooth
spatial variations in the velocity field .

This viscosity has been introduced to provide both a
mechanism for dissipation and a small smoothing length
scale. We do not claim that this term represents a com-
pletely realistic description of the viscoelastic response of
a rupturing or fracturing brittle material; rather we in-
tend it as a simple example of such a response which has
the important feature of introducing a small controlling
length scale. Numerical analysts often add an artificial
viscosity of this form to simulations of systems exhibiting
shocks in order to control those shocks, but we do not in-
clude this term only to alleviate computational burdens.
More generally, we recognize that some form of dissipa-
tion is likely to smooth the dynamics and that rupture
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propagation in these models depends crucially on such
smoothing.

A. Linear marginal stability at threshold

To solve for the dynamics of rupture propagation at
threshold €=0, we proceed as in Ref. [4] with a linear
marginal-stability analysis. In particular, after writing
u(x,t)= A(q)exp(gx +Qt), we seek a wave number
g=q* and velocity v =v* which satisfy Eqs. (7), where
Q is the solution of

Q2 —(ng*+2a)Q+1—¢*=0. (11

In this case, the problem reduces to setting {1=wvq and
then finding a double root of the equation

b%q*—2avqg+1—nvg>=0 (12)

with positive ¢ =¢* and v=v*. Note that the viscosity
7, just like the correction of order a? in (8), introduces
the higher-order term which permits solutions for finite
q*. Again these solutions exist only for v*>1 and > 0.
For 71 very small, the analogs of (9) are
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22 1 ()= 1+ (8am) 2 . (13)

n

q*=

We have solved Egs. (7) numerically, using the dispersion
relation (11), and have plotted the marginally stable ve-
locity v* as a function of the viscosity 7 in Fig. 1, for
two values of the friction parameter a. We have also
shown in Fig. 1 the results of numerical simulations of
Eq. (10) to demonstrate that the velocities selected by
direct numerical integration of the equation of motion
agree with those predicted by the linear marginal-
stability analysis. We have also verified that simulated
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FIG. 1. Rupture velocity v* predicted from linear marginal
stability [Eq. (7)] at threshold (A=1) and the asymptotic
steady-state rupture velocities as measured in simulations of Eq.
(14). The lines represent predicted velocities as functions of 7
for «=1.5 and 3.0, as indicated, while the symbols indicate the
results of simulation.



rupture fronts decay with the same rate g* as that pre-
dicted by linear marginal stability.

There are three roots to the cubic equation (12) and, in
the frame moving at velocity —v, the displacement u
must have the form u(x)=3}_,4; exp(g;x) in the re-
gion of interest. For v=v* and small 1, ¢, =~1/(2a) and
g,=q3=¢q*~b?/(2nv). For small 7, therefore ¢* >>q,,
and we would nominally expect that the slowly decaying
mode exp(q;x) would dominate asymptotically as
x — —oo. Linear marginal stability, however, predicts
that the front decays exponentially as exp(qg*x). The
selection of the marginally stable mode with ¢ =¢* and
v=0v* must therefore also ensure that the amplitude of
the slowly decaying root A4, be zero.

The numerical simulations whose results we show in
Fig. 1 require a finite-difference approximation to the
continuum equation (10); that is, we perform an integra-
tion of the finite-difference equations

Lo 1
i, =—

J 2

(u;, . 1—2u;+tu
a Jt+1 J

- —u;+A

— () + L

iy 20 ) (14)

j
But whereas in the original model (4) the rupture velocity
always depends on the size of the finite-difference spacing
a, our simulations reveal that the selected velocities and
wave numbers are independent of a for sufficiently small
a. In Sec. V we return to a discussion of the rupture dy-
namics in simulations where a is large compared to the
viscous length (¢*) '=[7/(2a)]'/%

B. Off-threshold selection in the viscous model

The linear marginal-stability analysis presented above
describes the motion of the rupture front at threshold
€=0. In a variety of systems [7,9], the dynamics of a
front propagating into an unstable state are typically
governed by linear marginal stability because the tip ex-
tends infinitely far ahead of the front and the behavior of
the entire system is determined by the dynamics of the
leading edge. In this case, there exists a continuum of
stable steady-state propagating solutions of different ve-
locities, the slowest of which is selected dynamically. For
a front propagating into a metastable state, however, the
nonlinearity behind the tip becomes relevant, and there is
typically only a single steady-state propagating solution
(or a discrete set of such solutions) [8—-10]. We find, how-
ever, that in this class of earthquake models there exists a
continuum of steady-state solutions off threshold, for
€>0. We have not fully investigated the stability of these
solutions, but it is clear that the state which is selected
dynamically is the fastest of these solutions.

We are interested in steady-state solutions to Eq. (10),
that is, solutions of the form u(x +vt) moving at con-
stant velocity —v. Such states are solutions of the third-
order ordinary differential equation (ODE)

nou'' —b*u" —u—g¢(vu')=—1+e, (15

subject to the boundary conditions u(0)=u'(0)
=u"(0)=0, x =0 now being the instantaneous location
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of the rupture tip. For fixed n and @, we can look for
solutions to (15) at different velocities v. Shown in Fig. 2
are the steady-state slipping rates #(x)=vu'(x) for vari-
ous v, integrated forward in x starting at x =0. We find
that there is a critical velocity v, above which solutions
cease to exist, or at least become highly extended, irregu-
lar, and nonphysical. For the particular parameter
values chosen (@=3.0, n=0.1, and €=0.01), we find
v, =1.843711£0.00001. For v <v,, there are steady-state
solutions which restick; for these solutions, vu'(x )=0 for
all x beyond the resticking point x, and u(x) is accord-
ingly constant for x >x,. For those resticking solutions
with v <v., the existence of a singular third derivative
u'""(x) at the resticking point requires that the friction
likewise be singular: ¢~ —|u"(x,)|8(x —x,). This
singularity is permitted because arbitrarily large negative
values of ¢ are allowed mathematically within our model.

We have included in Fig. 2 the slip pulse #(x ) to which
a full integration of the partial differential equation
(PDE) (10), or more precisely, the finite-difference equa-
tion (14), converges at long times. The selected solution
appears to be that which just barely resticks. At
v=uv,,u""(x,)=0, resticking is smooth and requires no
divergence in ¢. This “edge solution” which barely res-
ticks is the fastest steady-state solution available to the
system at fixed 7 and a. Because of resticking and the
singular friction force in our model, there exists a con-
tinuous set of solutions off threshold rather than only the
single solution which might be expected otherwise.

We have examined numerically the selection of off-
threshold solutions by using the steady-state solutions for
u(x), u(x), and ii(x) generated by Eq. (15) as initial con-
ditions for a full dynamic integration of Eq. (14). We

1.0 T

— v =1.820
— v =1.840

—— v=1843 L
—av=1844 e
v v=1850 .

- - - - simulation

v o5t . ]
Lo /N
0.5 F ! v
1/(200) —| ,’I \‘.
00 L
00 30 60
0.0 ;
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X

FIG. 2. Slip rates u(x)=wvu’'(x) for steady-state propagating
solutions, as generated by a numerical integration of the third-
order ODE (15), for various velocities v (solid curves with sym-
bols). Also shown (dashed curve) is the asymptotic steady state
u(x) exhibited in the dynamical simulation of the PDE (10).
The results shown are for a=3.0, =0.1, and €=0.01. The in-
set shows the full width of the dynamically selected pulse, which
is considerably larger than the pulse widths shown for v <v,.
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present the results of these simulations in Fig. 3, which
shows the time evolution of slip pulses #(x) for two
different initial conditions. The steady-state edge solu-
tion with v=v, is preserved under the equation of
motion, while the “subedge” solution with v <v, is at-
tracted at long times to the edge solution.

The apparent instability of the singular steady-state
solutions with v <v, in the fully dynamic integration of
Eq. (14) raises several unresolved questions. While those
singular solutions are mathematically allowed within our
model, and can be studied within the context of the ODE
(15), it is not obvious that such solutions will be accessi-
ble in any finite-difference approximation, or in any finite
time-step integration that discretizes the times at which
individual points on the fault can restick. Any finite-
difference scheme (with or without the smoothing viscosi-
ty that we have introduced) may smooth a singular solu-
tion. The instability of subedge solutions demonstrated
in Fig. 3 may therefore suggest that once the singular res-
ticking point is smoothed, the only remaining smooth
solution to be found is the edge solution at v =v,.

It is possible, of course, that the slower steady-state
solutions are simply unstable, but we have not as yet been
able to answer this question. If the slower steady-state
solutions with discontinuous second derivative are being
treated appropriately in the finite-difference model (14),
then we would wish to determine if the edge solution is
selected from among a set of stable states (by a mecha-
nism such as marginal stability) or if it is simply an isolat-
ed stable attractor for the dynamics.

1.0 T T T
edge solution (v =v,)
----------- sub-edge solution (v < v,)
0.8 r 1
0.6
du(x)/dt
04 r
02
0.0 G Ui
-18.0 -13.0

FIG. 3. Time evolution of slip pulses #(x,#) moving to the
left for two initial conditions: the edge solution at v =v, (solid
curves) and a steady-state solution of Eq. (15) for v <v, (dotted
curves). Shown are snapshots of each pulse taken at fixed time
intervals of Ar=2.0. For both cases, a=3.0, n=0.1, and
€=0.5. The edge solution moves at constant velocity v, =~1.215
while the subedge solution both changes shape over time and
accelerates to reach the edge solution. The initial condition for
the subedge case was the solution of the ODE (15) for v =1.10.
The bunching of pulses in the subedge case at short times
reflects its initially slow velocity.

Regardless of such issues, we can postulate that the
edge solution is the one which is selected dynamically,
such that v =v,. This hypothesis appears to be correct
within the accuracy of our numerical experiments. In
Fig. 4, we plot v(e), the velocity of the edge solution to
Eq. (15) for various €, along with values of v obtained by
full integration of the finite-difference approximation (14)
to the PDE (10). We find agreement with the simulation
at all €, with no free parameters to fit.

In Ref. [4], LT hypothesized that the selection of
modes off threshold was determined by the only charac-
teristic slip-rate scale in the friction ¢(# ). In particular,
they supposed that the selected steady-state solution was
that for which the maximum slip rate u,, ~1/(2a).
The rupture speeds v(e) predicted with this hypothesis
agreed unexpectedly well with those found in simulations,
with the minor caveat that the free parameter denoted by
y in Ref. [4] was adjusted to fit the data and was found
to be slightly different than its analytically predicted
value. With this hypothesis, LT also were able to demon-
strate how this selection mechanism at €>0 merges
smoothly with the linear marginal stability mechanism at
e=0.

Figure 2 demonstrates that slip rates u exceed 1/(2a)
considerably for solutions with v =~v,. Why, then, did the
LT hypothesis work as well as it did? The answer lies in
the great sensitivity of the steady-state solutions to small
variations of v in the vicinity of v,. For the small values
of i that we have studied, small differences in v separate
the solution with %, =1/(2a) and the edge solution at
v=v,. This sensitivity arises from the character of the
solutions of Eq. (15).

For 0<u <1/(2a), u(x) is a linear superposition of
three exponential modes of the form exp(gx ), where the

2.0 " ' '
|
.......... .
18 b |
—
16 | T ' |
~a
v \\\
~N
N
N
14 F b —
AN
\
\
............ =30 \
Ll —— =15 V1T
1.0 ' I | |
I 30 20 -1.0 0.0
log,,(€)

FIG. 4. Rupture velocity v as a function of the loading pa-
rameter €, for n=0.1 and various a, as indicated. The curves
represent the velocities of the edge solutions of the ODE (15).
The symbols represent asymptotic steady-state velocities mea-
sured in a dynamical simulation of the PDE (10).
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q’s are the three roots of Eq. (12). For a given v, this
solution is completely determined by the boundary condi-
tions at the tip of the rupture: u(0)=u’'(0)=u"(0)=0.
When—and if—this solution reaches a point where
u=vu'=1/(2a), it must join smoothly to a solution of
(15) with ¢=0, that is, to a linear superposition of ex-
ponentials for which the three ¢’s are the roots of

ng—b%q*—1=0. (16)

For small 7, these roots are g ~=i/b and g~b?*/(qv).
The first pair of these roots produces a sinusoidal front
whose width is of order b=(v*—1)!/?, which we can un-
derstand to be a “relativistic” contraction of the charac-
teristic scale length in this problem, defined earlier to be
unity. The third root g=~b?%/(nv) produces a rapidly
growing exponential which, if present with appreciable
amplitude, would dominant the high-velocity solution
and cause it either to decelerate rapidly and to rejoin the
sticking family, or to accelerate rapidly and become en-
tirely unphysical. Thus the edge solution, shown by the
dashed curve in Fig. 2, must be at or near the propaga-
tion speed v for which the amplitude of this third mode,
determined by the matching conditions at # =1/(2a),
passes through zero. The value of v at which this hap-
pens obviously cannot be less than that for which
U e = 1/(2a). It also cannot be much greater than this
value because, as seen in Fig. 2, the more rapidly ac-
celerating solutions of (15) at small & cross over to diver-
gent high-velocity solutions. Therefore, the LT guess
turns out to be accurate even if not correct in the most
fundamental sense.

We need now to reexamine the LT analysis of how the
selection mechanism at € >0 merges with marginal stabil-
ity at e=0. Of course, if the edge solution is always mar-

7.0 T T T .

=0.0001 e
6.0 b ® simulation ¢ d

- Ttb
e=01 e
5.0 + E
w
a0 b £=001 . |
30 + g
2.0 ’ 1 1 1 1
1.1 1.3 1.5 1.7 1.9

v

FIG. 5. Width W of the slip pulse (distance between the rup-
ture tip and the resticking point) as a function of v, for a=3.0
and 7=0.1, at the values of € indicated. Shown also is the dom-
inant contribution to the pulse width from the regime where
@ >1/(2a): wb=m(v*—1)""2. The contribution from b be-
comes less important as €—0 and the rupture tip extends fur-
ther out into the region ahead of the front.
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ginally stable, consistency is automatic. But we can say
more. For analytic simplicity, consider the limiting case
of small € and 7. The low-speed [u,, <1/(2a)],
viscosity-dominated resticking solutions of (15) have the
form

u(x)=—e+ A,e" +24e% cos(gx ) +2 Ae™sin(gx ) ,
(17

where g, and g+ig are the roots of (12) for some value of
v=v.(€) [which, for small €, we suppose to be just slight-
ly smaller than v,(0)], and where A, and 4 +iA4 are the
amplitudes associated with those modes. To lowest order
in 7, we have §~(2a/7)"/? and v2(0)=~1+2(2an)'/?, in
accord with (13); we also find ¢,=1/(2a) and
g~8a/n*)"*v.(0)—v.(e)]"%. We see immediately
that we need v, (€) <v_.(0) in order that the double root of
(12) at €e=0 becomes a complex-conjugate pair of roots
for €e>0. In this way, we obtain an oscillation in u(x),
and, thus, a (nominal) resticking point. Because the term
exp(gx) in (17) grows rapidly, the resticking point and
the point at which & =vu’ is maximum both must lie very
close to X, =m/g. According to the preceding discussion,

we should be able to determine v by setting
Umax =Vu'(X,)=1/(2a). The result is
172
Uc(e)zvf(o)_ﬂz ﬂ /ln2 l N (18)
2 €
172
f,~ || I {% (19)

Thus, v.(€) approaches the marginal-stability value v.(0)
logarithmically in € as e—0, and X,, the distance between
the front of the pulse and the nominal resticking point,
diverges in this limit in accord with our picture of a pure-
ly exponential front at threshold.

Of course, we know from an examination of Fig. 2 that
the actual resticking point x, lies well beyond the nomi-
nal resticking point X, and that, except possibly for very
small values of €, it is in the latter region that most of the
slipping takes place. Away from threshold, the dynami-
cally selected rupture front is the one for which the fault
is locally slipping almost freely, unhindered by friction
because u# >>1/(2a). Thus viscosity does not play an im-
portant role during this phase of the motion because the
selection mechanism guarantees that the fast mode with
g=~b?/(nv) is very nearly absent. To a good approxima-
tion, therefore, we can compute u(x ) by solving (17) with
1 and ¢ both set to zero. The result is (with A=1—¢)

u(x)=A ) (20)

X
1_ -
Ccos b

from which we see again that the width W of the front is
W=mb=m[vi(e)—1]%. (21

This approximation is tested in Fig. 5, where we have
plotted W(v) as obtained from dynamic simulations
along with the prediction (21). The residual discrepancy
between the actual and predicted pulse widths occurs be-
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FIG. 6. Rupture velocity v* predicted from linear marginal
stability [Eq. (7)] at threshold (A=1), as a function of grid spac-
ing a for the finite-difference viscous model (14) (solid curve),
the finite-difference BK model (4) (dotted curve), and the contin-
uum viscous model (10) (dashed curve). Symbols represent ve-
locities measured in simulations of the model for various a. All
results are for a=3.0 and 7=0.1. The intermediate region
where a=[7/(2a)]'/? is not described well by either limiting
case, but the simulation results are accurately described for all a
by the finite-difference viscous model with both length scales in-
cluded.

cause (20) and (21) omit the viscosity-controlled regions
of large acceleration at the beginning and end of the slip-
ping zone. This effect is most pronounced near threshold
(e=~0) where the width W of the slipping region diverges.

This picture of a rupture propagating in the form of a
localized pulse of nearly free slip is similar to the notions
of “Heaton pulses” [12] or “Schallamach waves” [16]. In
such phenomena, parallel surfaces, such as a carpet on a
floor or the two sides of an earthquake fault, move across
one another not by uniform sliding, which requires a
large amount of work, but by propagation of sharp pulses
within which the surfaces effectively disengage. That is
essentially the situation that emerges in the present mod-
el. A large amount of slip is achieved with little frictional
drag—since the slip rate # is so large—and with little
viscous dissipation—since the pulse resticks in a manner
which minimizes the effect of this term. Although the
uniform sliding mode seems intuitively simple and ap-
pealing, our analysis reveals that the dynamical mecha-
nism for selecting the speed and the shape of these pulses,
or even for predicting the conditions under which they
may exist, is highly nontrivial.

IV. VISCOELASTICITY

The results obtained so far, like those in LT, have the
apparently awkward feature that rupture speeds can
exceed the sound velocity. This feature is a result of our
having used a viscosity in (10) that is more appropriate
for a liquid than a solid. In particular, (10) does not de-

scribe correctly the high-frequency response of an elastic
material.

A more nearly correct constitutive relation for use in
(10) would be one in which the instantaneous viscosity 7
is replaced by a time-delayed response:

d%u : d%u(t')
— nt—t)———dt’ . (22)
K ax? _— Ax?
To see the physical implication of (22), it is sufficient to
suppose that 7 is characterized by a single new exponen-
tial relaxation time 7, such that

A(0)="Texp(—1/7) . (23)
The symbol 7 now denotes the ordinary liquidlike viscous
coefficient for processes that occur on time scales much
longer than 7, in a manner consistent with its usage in
Eq. (10).

The existence of a nonzero 7 is essential in order to ob-
tain a solidlike response at high frequencies. A good way
to see this is to compute the sound speed in a uniform
system governed by (10) but with the modified viscoelas-
tic force given by (22) and (23) and without the friction ¢.
If u ~ exp(ikx +iwt), then the relation between the fre-
quency o and the wave number k can be written in the
form

o=k 1+ 220 | 24)
1+iowr

where we have assumed k >>1. For small enough k such
that ot << 1, we find a damped wave with
172

o~k |+ +1211 , wr=<kr<<l. (25)

1
4

The associated wave speed is of order unity for small 7.
At high frequencies, on the other hand, the damping
disappears and we have

172 172

o~+k 1+ | | or=kr|1+ZL ] >>1. (26)
T T

Note that the high-frequency ‘“‘unrelaxed” wave speed
diverges as 7 becomes small. In Sec. III, we have set
7=0, so that this upper speed does not appear in that
model. It is this speed, however, that limits the rate at
which energy and momentum can flow through the solid-
like material and therefore, it is this speed that would be
an upper bound for rupture propagation.

The obvious question is whether the front of the rup-
ture in our model is probing the viscoelastic response
function 7 at effectively high frequencies or low frequen-
cies. Because we have set 7=0 in Sec. III, we have impli-
citly assumed the latter, and we must now check this as-
sumption for self-consistency. The largest characteristic
frequencies of interest are of order g *v. Using the results
of Eq. (13) for small , we find that self-consistency re-
quires that
172

<«<1. 27)

. ar’
oT=q*vT | ——
n
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It follows that the model, as we have used it, makes good
sense as long as the relaxation times or equivalently, in
our units, the characteristic lengths 7 and 7 are both
small compared to o~ !, and as long as 7 is not anoma-
lously much larger than 7. These seem to be reasonable
assumptions. In this case, although (g*) ™' ~[%/(2a)]'/?
is small, the requirement w7~ (an)!’?<<1 becomes in-
creasingly well satisfied as 7—0.

V. COMPARISON OF VISCOUS
AND FINITE-DIFFERENCE MODELS

The purpose of these calculations has not just been to
solve for the rupture dynamics in the viscous model, but
to begin to understand more generally the role of small
length scales in these types of stick-slip models.

We have seen in Eqgs. (9) and (13) that the selected
quantities ¢* and v* scale differently with the two small
scales in question, @ and 7. Therefore, the control of rup-
ture dynamics by a small length scale depends on more
than the magnitude of the cutoff. The specific details of
this control depend on the manner in which the cutoff
enters the dynamical equations of motion.

We have addressed here only questions pertaining to
the dynamics of propagation along a uniformly stressed
fault, which has been shown in previous studies of the
uniform BK model [2,3] to be associated with large
events in the earthquake cycle. If displacements (and
hence stresses) on the fault are slightly irregular, and the
fault is loaded over many cycles, then a broad distribu-
tion of event sizes is observed, such that the smallest
events reflect the short-wavelength cutoff in the model.
Simulations of the viscous model (14) carried out over
many loading cycles [17] likewise reveal a broad distribu-
tion of earthquake magnitudes, with a cutoff in the distri-
bution at small sizes determined by the magnitude of the
viscous parameter 7 rather than the grid spacing a as was
the case in the previous model.

The dynamics of rupture propagation have been shown
to be governed by the continuum equation of motion (10)
when the smoothing length of order (¢*) ™'~ [%/(2a)]'/?
is sufficiently larger than the grid spacing a that we intro-
duced in our finite-difference approximation (14). This is
because the motion of the front is smooth on the scale of
(g*)"! and cannot exhibit dynamical structure on the
scale of the grid spacing a. We know, however, that in
the limit »—0, we return to the original model (4)
without any viscosity and must once again become
dependent on the underlying grid spacing.

In order to address this crossover from the continuum
model dominated by the viscous length scale (¢g*)™! to
the finite-difference model dominated by the grid spacing
a, we can solve the marginal stability equations (7) for
motion at threshold, using the finite-difference version of
the viscous model (14), where (Q is the solution of

02200 +1— % [ cosh(ga)—1](1+70)=0 . (28)
a

We have solved Eqgs. (7) and (28) and plotted in Fig. 6 the
marginally stable velocity v* as a function of the finite-
difference grid spacing a for fixed 7 in the three cases of
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interest: the finite-difference viscous model (70), the
original finite-difference model (9=0), and the continu-
um viscous model [77O0, from the solution of Egs. (7)
and (11)]. The results of simulations are also shown for
various a. In the intermediate region where
a~[71/(2a)]'/? neither of the limiting cases describes the
rupture propagation very accurately.

VI. DISCUSSION AND CONCLUSIONS

We have investigated a simple extension of the uni-
form, one-dimensional Burridge-Knopoff model in which
a small viscosity is introduced in order for the model to
have a well-defined continuum limit, and have probed the
manner in which the viscosity controls the dynamics of
rupture propagation. We have examined in greater detail
the process by which propagating modes are selected. In
the off-threshold case, we have found a continuum of
steady-state propagating modes, which is unusual for
propagation into a metastable state. The off-threshold
propagation is such that the system selects that mode
which slips in a nearly free manner. The sharp pulses by
which slip propagates in this model appear to be physi-
cally significant in a wide range of applications.

Our remaining point of greatest uncertainty is the
mathematical mechanism for mode selection in the case
of off-threshold slip. The situation is best summarized by
a mode-counting analysis [18]. Near the tip of the crack
at x =0, where u(x) is small, the solutions of the steady-
state equation (15) have the form wu(x)=—¢
+37_, 4, exp(g;x), where the g; are solutions of Eq.
(12). For v >1, all the g; have positive real parts, and
thus all three modes are allowed. The conditions
u(0)=u'(0)=u"(0)=0 fix the three amplitudes 4,, leav-
ing only the parameter v unconstrained. Any solution of
(15) from this one-parameter family of initial conditions
will be continuous in all of its derivatives until the first
place x, where u’(x,)=0, at which point resticking
occurs and ¢(vu') takes on whatever value is needed to
prevent back-slipping. For x>x,,u(w)=u(x>x,)
=u(x,) and, since we have no a priori information about
the values of x, or u( ), we obtain no new constraint at
the resticking point for determining v. If, however, we
were to require that the front restick with a continuous
second derivative 4"’ (x —x, —)=0, then the only accept-
able solution would be the edge solution which resticks
smoothly, and the velocity v would be constrained to be
the critical velocity v,. Nothing in our mathematics
seems to require us to do this, but there are strong indica-
tions that both nature and our finite-difference integra-
tion scheme prefer this smooth solution.

Note that the situation is different at threshold. Since
the three wave numbers g; all have positive real parts and
the rupture “tip” extends exponentially as x — — oo, all
three modes A; exp(g;x) decay smoothly in this limit,
and only one amplitude is therefore constrained by set-
ting a reference point for the front. [For example, we can
require u'(0)=1/(2av), thereby fixing an amplitude, say
A5, to be specific.] Then there remain three free parame-
ters v, 4,, and A4,, which characterize a particular mode
at threshold. Again, we can integrate (15) to the restick-
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ing point and, if we allow any second derivative upon re-
sticking, we continue to have a three-parameter family of
solutions at threshold. If we require u''(x,) to be con-
tinuous, we are left with a two-parameter family of solu-
tions. In either case, we are left with more than simply a
one-parameter family of solutions characterized by the
velocity v, which is typical for problems governed by
linear marginal stability.

Other open questions remain. While we have shown
(in Fig. 3) that initial conditions are attracted to the edge
solution under the full time evolution of the dynamical
model, we have not investigated in detail the stability of
the more slowly moving subedge solutions, nor have we
resolved the subtleties associated with representation of
such singular solutions in our approximate numerical in-
tegrations. Therefore, we do not know if the state mov-
ing at v =v, is an isolated stable attractor at the edge of a
continuous band of unstable steady-state solutions, or if
that state resides at the edge of a band of stable steady-
state solutions and is selected by some sort of marginal-
stability mechanism. We have only noted that the select-
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ed mode is that for which the system slips in a nearly free
manner, but we have not investigated to what extent such
“disengagement” is an organizing factor in the dynamics
of this system, or in other dynamical systems which ex-
hibit localized failure. We have not investigated the
effects of other physically relevant regularization
schemes, such as a rate- and state-dependent friction
force which introduces a characteristic slip distance [19],
nor have we determined whether selection mechanisms of
the type described here will persist in higher-dimensional
generalizations of our fault model, where potentially
singular elastic stress concentrations near the rupture tip
could dominate the selection process.
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