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Exercises

N.9 Cardiac dynamics.1 2 (Computation, Biology,
Complexity) ©4

Reading: References [6, 11], Niels Otani,
various web pages on cardiac dynamics,
http://otani.vet.cornell.edu, and Arthur T.
Winfree, ‘Varieties of spiral wave behav-
ior: An experimentalist’s approach to the
theory of excitable media’, Chaos, 1, 303-
334 (1991). See also spiral waves in
Dictyostelium by Bodenschatz and Franck,
http://newt.ccmr.cornell.edu/Dicty/diEp47A.mov
and http://newt.ccmr.cornell.edu/Dicty/diEp47A.avi.

The cardiac muscle is an excitable medium. In
each heartbeat, a wave of excitation passes through
the heart, compressing first the atria which pushes
blood into the ventricles, and then compressing the
ventricles pushing blood into the body. In this exer-
cise we will study simplified models of heart tissue,
that exhibit spiral waves similar to those found in
arrhythmias.

An excitable medium is one which, when triggered
from a resting state by a small stimulus, responds
with a large pulse. After the pulse there is a re-
fractory period during which it is difficult to excite
a new pulse, followed by a return to the resting
state. The FitzHugh-Nagumo equations provide a
simplified model for the excitable heart tissue:3

∂V

∂t
= ∇

2V +
1

ε
(V − V 3/3 − W ) (N.30)

∂W

∂t
= ε(V − γW + β), (1)

where V is the transmembrane potential, W is the
recovery variable, and ε = 0.2, γ = 0.8, and β = 0.7
are parameters. Let us first explore the behavior
of these equations ignoring the spatial dependence
(dropping the ∇2V term, appropriate for a small
piece of tissue). The dynamics can be visualized in
the (V, W ) plane.

(a) Find and plot the nullclines of the FitzHugh-
Nagumo equations: the curves along which dV/dt
and dW/dt are zero (ignoring ∇2V ). The inter-
section of these two nullclines represents the rest-
ing state (V ∗, W ∗) of the heart tissue. We apply
a stimulus to our model by shifting the transmem-
brane potential to a larger value—running from ini-
tial conditions (V ∗ + ∆, W ∗). Simulate the equa-
tions for stimuli ∆ of various sizes; plot V and W
as a function of time t, and also plot V (t) versus
W (t) along with the nullclines. How big a stimulus
do you need in order to get a pulse?

Excitable systems are often close to regimes where
they develop spontaneous oscillations. Indeed, the
FitzHugh-Nagumo equations are equivalent to the
van der Pol equation (which arose in the study of
vacuum tubes), a standard system for studying pe-
riodic motion.

(b) Try changing to β = 0.4. Does the system os-
cillate? The threshold where the resting state
becomes unstable is given when the nullcline inter-
section lies at the minimum of the V nullcline, at
βc = 7/15.

Each portion of the tissue during a contraction
wave down the heart is stimulated by its neighbors
to one side, and its pulse stimulates the neighbor to
the other side. This triggering in our model is in-
duced by the Laplacian term ∇2V . We simulate
the heart on a two-dimensional grid V (xi, yj , t),
W (xi, yj , t), and calculate an approximate Lapla-
cian by taking differences between the local value
of V and values at neighboring points.

There are two natural choices for this Lapla-
cian. The five-point discrete Laplacian is gener-
alization of the one-dimensional second derivative,

1 New exercise supplementing Statistical Mechanics: Entropy, Order Parame-

ters, and Complexity by James P. Sethna, copyright Oxford University Press, 2007,
page 15. A pdf of the text is available at pages.physics.cornell.edu/sethna/StatMech/
(select the picture of the text). Hyperlinks from this exercise into the text will work
if the latter PDF is downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3Nerve tissue is also an excitable medium, modeled using different Hodgkin-Huxley

equations.

http://newt.ccmr.cornell.edu/Dicty/diEp47A.mov
http://newt.ccmr.cornell.edu/Dicty/diEp47A.avi
http://pages.physics.cornell.edu/sethna/StatMech/NewExercises.pdf
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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∂2V /∂x2 ≈ (V (x + dx)− 2V (x) + V (x− dx))/dx2:

∇
2
[5]V (xi, yi) ≈ (V (xi, yi+1) + V (xi, yi−1)

+ V (xi+1, yi) + V (xi−1, yi)

− 4V (xi, yi))/dx2

↔
1

dx2





0 1 0
1 −4 1
0 1 0



 (2)

where dx = xi+1 − xi = yi+1 − yi is the spac-
ing between grid points and the last expression is
the stencil by which you multiply the point and
its neighbors by to calculate the Laplacian. The
nine-point discrete Laplacian has been fine-tuned
for improved circularly symmetry, with stencil

∇
2
[9]V (xi, yi) ↔

1

dx2





1/6 2/3 1/6
2/3 −10/3 2/3
1/6 2/3 1/6



 . (3)

We will simulate our partial-differential equation
(PDE) on a square 100×100 grid with a grid spac-
ing dx = 1.4 As is often done in PDEs, we will
use the crude Euler time-step scheme V (t + ∆) ≈

V (t)+∆∂V /∂t (see Exercise 3.12): we find ∆ ≈ 0.1
is the largest time step we can get away with. We
will use ‘no-flow’ boundary conditions, which we
implement by setting the Laplacian terms on the
boundary to zero (the boundaries, uncoupled from
the rest of the system, will quickly turn to their
resting state). If you are not supplied with exam-
ple code that does the two-dimensional plots, you
may find them at the text web site [8].

(c) Solve eqn N.30 for an initial condition equal to
the fixed-point (V ∗, W ∗) except for a 10×10 square
at the origin, in which you should apply a stimulus
∆ = 3.0. (Hint: Your simulation should show a
pulse moving outward from the origin, disappear-
ing as it hits the walls.)

If you like, you can mimic the effects of the sinoa-
trial (SA) node (your heart’s natural pacemaker)
by stimulating your heart model periodically (say,
with the same 10 × 10 square). Realistically, your
period should be long enough that the old beat fin-
ishes before the new one starts.

We can use this simulation to illustrate general
properties of solving PDEs.

(d) Accuracy. Compare the five and nine-point
Laplacians. Does the latter give better circular sym-
metry? Stability. After running for a while, dou-
ble the time step ∆. How does the system go un-
stable? Repeat this process, reducing ∆ until just
before it goes nuts. Do you see inaccuracies in the
simulation that foreshadow the instability?

This checkerboard instability is typical of PDEs
with too high a time step. The maximum time
step in this system will go as dx2, the lattice spac-
ing squared—thus to make dx smaller by a factor
of two and simulate the same area, you need four
times as many grid points and four times as many
time points—giving us a good reason for making
dx as large as possible (correcting for grid artifacts
by using improved Laplacians). Similar but much
more sophisticated tricks have been used recently
to spectacularly increase the performance of lattice
simulations of the interactions between quarks [3].

As mentioned above, heart arrhythmias are due to
spiral waves. To generate spiral waves we need
to be able to start up more asymmetric states—
stimulating several rectangles at different times.
Also, when we generate the spirals, we would like to
emulate electroshock therapy by applying a stimu-
lus to a large region of the heart. We can do both
by writing code to interactively stimulate a whole
rectangle at one time. Again, the code you have
obtained from us should have hints for how to do
this.

(e) Add the code for interactively stimulating a gen-
eral rectangle with an increment to V of size ∆ = 3.
Play with generating rectangles in different places
while other pulses are going by: make some spiral
waves. Clear the spirals by giving a stimulus that
spans the system.

There are several possible extensions of this model,
several of which involve giving our model spatial
structure that mimics the structure of the heart.
(One can introduce regions of inactive ‘dead’ tis-
sue. One can introduce the atrium and ventricle
compartments to the heart, with the SA node in the
atrium and an AV node connecting the two cham-
bers . . . ) Niels Otani has an exercise with further
explorations of a number of these extensions, which
we link to from the Cardiac Dynamics web site.

4Smaller grids would lead to less grainy waves, but slow down the simulation a lot.
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