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Abstract. Linear and nonlinear 2-d differential equations are studied to
illustrate the behavior two-dimensional nonlinear systems. The Fitzhugh-
Nagumo equations as a model of an excitable cell are used as an example.

1. Linear 2-d dynamics

Now that you have some idea of what happens
in one-dimensional dynamics, let’s now look at two-
dimensional dynamics. First let’s start with a linear
2-d system. A 2-d system means that there are now two
dependent variables (in this case x and y) and therefore
two, usually first-order, ordinary differential equations:

dx

dt
= Ax + By (1)

dy

dt
= Cx + Dy (2)

Here A, B, C and D are constants. These equations
are linear because they have two properties:

1. If the solutions obtained when the initial condi-
tions are x(0) = x0 and y(0) = y0 are x(t) and
y(t), then the solutions obtained when the initial
conditions are x(0) = cx0 and y(0) = cy0 are cx(t)
and cy(t), where c is any constant.

2. If the solutions obtained from initial conditions
x10 and y10, and x20 and y20, are x1(t) and y1(t),
and x2(t) and y2(t), respectively, then the solu-
tions from initial conditions x10+x20 and y10+y20

are x1(t) + x2(t) and y1(t) + y2(t).

It is always possible to convert two linear, first-order
equations into a single second-order equation as follows:
first notice that Eq. (2) may be written as:

(
d

dt
− D

)
y = Cx. (3)

Note: The expression (d/dt − D)(anything) is short-
hand for d(anything)/dt-D(anything). We therefore op-
erate on Eq. (1) with (d/dt− D):
(

d

dt
− D

)
dx

dt
= A

(
d

dt
− D

)
x + B

(
d

dt
− D

)
y. (4)

Substituting Eq. (3):

d2x

dt2
− (A + D)

dx

dt
+ (AD − BC)x = 0. (5)

(Notice that the coefficient of dx/dt is minus the trace
of the matrix [

A B
C D

]
(6)

while the coefficient of x is its determinant. This is
not an accident.) As you’ve seen from previous dif-
ferential equation courses, this second-order equation
has solutions of the form x(t) = (const)eλt. You can
determine the constant λ by substituting this solution
into Eq. (5). Doing the differentiations and combining
terms, we have,

(λ2 − (A + D)λ + (AD − BC))(const)eλt = 0 (7)

which is only zero when

λ2 − (A + D)λ + (AD − BC) = 0 (8)

This equation, called the characteristic equation, has
two roots; let’s call them λ1 and λ2. Then both eλ1t

and eλ2t are solutions. Since the system is linear, the
following,

x(t) = C1 exp(λ1t) + C2 exp(λ2t) (9)

must also be a solution, and in fact turns out to be the
most general form of the solution. The constants C1

and C2 are determined by the initial conditions. The
other dependent variable, y(t), has the same form, but
with different constants C1 and C2.

There is another way to solve Eqs. (1) and (2). We
can write these equations in matrix form as,

d

dt

[
x
y

]
=

[
A B
C D

] [
x
y

]
(10)
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In vector notation, this is:

dx
dt

= M · x, (11)

where,

x ≡
[

x
y

]
, and M ≡

[
A B
C D

]
(12)

We now try to find solutions which are functions of t
times one of the eigenvectors of the matrix M. Recall
that an eigenvector v1 of a matrix M has the property,

M · v1 = λ1v1; (13)

that is, when a matrix operates on one of its eigenvec-
tors, the result is another vector pointing in the same
direction as the eigenvector. The resultant vector is
longer or shorter than the original eigenvector, scaled
by a factor λ1 which is called the eigenvalue. (If λ1

is negative, then the resultant vector points in the di-
rection opposite to the original eigenvector. It is also
possible for λ1 to be complex.) It turns out that this
λ1 is the same as the quantity λ1 defined above as the
solution to the characteristic equation (8). We will see
this momentarily.

If the initial value of x(t) is a constant times one of
these eigenvectors v1, then initially we have,

dx
dt

= M · ((const)v1) = (const)λ1v1 (14)

which means that dx/dt is also pointing in the direction
of eigenvector v1. It should be clear that when both a
vector x and its time rate of change (dx/dt) point in
the same direction, then that the vector will continue
to point in that direction for all time, and the trajec-
tory, marked by the tip of the vector, will be a straight
line. Therefore, if initially x(t) points in an eigenvector
direction: (x(0) = (const)v1), then we can be confident
that the solution must be of the form, x(t) = f(t)v1 for
some scalar function f(t). Substituting this form of the
solution into Eq. (11), we have,

df(t)
dt

v1 = M · (f(t)v1) (15)

or, using Eq.(13),

df(t)
dt

v1 = f(t)λ1v1. (16)

We can drop the v1 from both sides of the equation to
obtain

df(t)
dt

= λ1f(t). (17)

Notice what eigenvectors has allowed us to do. We have
reduced our two-dimensional equations down to a sin-
gle one-dimensional equation to which we know the so-
lution: f(t) = f1e

λ1t! Here f1 is a constant which de-
pends on the initial conditions. All this, of course, also
applies to any other eigenvectors. In a two-dimensional
system, there are generally two eigenvectors, which we’ll
call v1 and v2.

Now here’s the point: as long as there are two eigen-
vectors pointing in different directions (which is almost
always true), you can write any initial condition vector
x0 as a linear combination of these eigenvectors, like
this:

x0 = f1v1 + f2v2 (18)

Now remember what we said about linear equations.
The solution resulting from a sum of initial conditions
is just the sum of the individual solutions resulting from
these initial conditions. (You might have to think about
that one a little. . .) The solution for initial vector f1v1

is f1e
λ1tv1, as we have just seen. Similarly, if the initial

vector is f2v2 then the solution is f2e
λ2tv2. Therefore

when the initial conditions are as expressed in Eq. (18),
the solution must be,

x(t) = f1e
λ1tv1 + f2e

λ2tv2 (19)

Not only is this eigenvector-eigenvalue analysis a method
of solution, it is also telling you something important. It
says that two-dimensional linear equations really only
have two types of behavior, one associated with each
of the two eigenvectors. Any behavior you see coming
from a 2-d linear system is actually just the mathemati-
cal sum of these two behaviors. Furthermore, these two
behaviors are independent of each other. One can be
growing exponentially, while the other is decaying, for
example. These two behaviors characterize the system;
in fact, “eigen” means “characteristic” in German, if my
information is right. These behaviors, by the way, are
called eigenmodes of the system, quite appropriately.

When both of the eigenvalues have negative real
parts, then both of the exponentials appearing in Eq. (19)
are decreasing in magnitude, and thus x(t) must be
“falling” into the origin. Such behavior is called stable
behavior, and the system itself is referred to as stable.
If either of the eigenvalues has a positive real part, then
the corresponding exponential is growing with time. In
this case, unless the corresponding coefficient (f1 or f2)
is identically 0, x(t) will grow in magnitude, and move
away from the origin. This behavior in termed unstable.

Note, by the way, that is possible for both the eigen-
values and eigenvectors to be complex. When this hap-
pens, we will not be able to find eigenvector directions
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in the real phase plane, and therefore we will not be
able to find any straight-line trajectories. In this case,
the orbits tend to spiral around the origin. The notion
of stability still applies to this case. In stable systems,
the trajectories spiral in; in unstable systems, the tra-
jectories spiral out.

So how do we solve for these eigenvalues and eigen-
vectors? Writing out Eq. (13), we have,

[
A B
C D

] [
vx

vy

]
= λ

[
vx

vy

]
(20)

where the column vector appearing on both sides stands
for either of the eigenvectors, and λ stands for the corre-
sponding eigenvalue. Writing this equation out as two
scalar equations, and then writing it back in matrix
form again, we find that Eq. (20) may be written as,

[
A − λ B

C D − λ

] [
vx

vy

]
= 0 (21)

This equation only has a non-zero solution for the col-
umn vector v when the determinant of the matrix is
zero; that is, when,

(A − λ)(D − λ) − BC = 0 (22)

Notice that this is just the characteristic equation (Eq. (8))
again. The solutions are just going to be λ1 and λ2,
which demonstrates that the two definitions of λ we
have been using are the same.

To obtain the eigenvector corresponding to one of
these eigenvalues, simply substitute that eigenvalue into
Eq. (21) and solve for the components of v. In solving
for v, you will find that one of the equations is redun-
dant, a consequence of the fact that the determinant
of the matrix is zero. You handle this by choosing one
of the components of v arbitrarily, say equal to 1, and
then solving for the remaining component(s). This arbi-
trariness corresponds to the fact that the length of the
eigenvector is arbitrary—only the direction the eigen-
vector points is important. In other words, if v is an
eigenvector of M with eigenvalue λ, then so is av for
any constant a. This follows from the fact that M is
linear.

2. Nonlinear 2-d dynamics

Now that we know something about how two-dimens-
ional linear systems behave, let’s look at nonlinear 2-d
systems. We’ll use as our example the Fitzhugh-Nagumo
equations, which describe the behavior of an excitable
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Figure 1. The fixed point and the V - and W -nullclines
for the Fitzhugh-Nagumo equations.

cell, like a neuron or cardiac cell. The equations are:

∂V

∂t
=

1
ε

(
V − V 3

3
− W

)
≡ f(V, W ) (23)

∂W

∂t
= ε(V − γW + β) ≡ g(V, W ) (24)

where V is the membrane voltage and W is a quantity
which is associated with the recovery of the cell after it
fires. Typical values for the parameters are ε = 0.2,
γ = 0.8, and β = 0.7. You can think of Eq. (23)
as the current equation, with the capacitive charging
term (proportional to dV/dt) on the left and the non-
linear channel currents on the right. From the form
of Eq. (24) you can see that the recovery of the cell
is being represented as a gate opening equation with
voltage-dependent rates.

Of course, one way to figure out how a system of
differential equations behaves is to model them on the
computer, as we are doing in EBME 359. There are
however, reasons to supplement the simulations with
pencil-and-paper analysis. The most important reason
to look at the equations analytically is to acquire some
understanding for how the equations produce the be-
havior that you observe in the simulations. Another
reason, of course, is to check your simulations.

A natural way to analyze two-equation systems is
to plot their trajectories on a two-dimensional plane
whose axes are the two dependent variables. Such a
study is called phase plane analysis. In the case of the
Fitzhugh-Nagumo equations (23) and (24), the two de-
pendent variables are V and W , so that we are plotting
trajectories in V -W space.

We start the analysis by plotting so-called nullclines.
The V -nullcline is simply defined to be that set of points
for which dV/dt = 0. Defining f(V, W ) to be the right-
hand side of Eq. (23), the V -nullcline is just that set of
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points (V, W ) which satisfies the condition f(V, W ) = 0.
From Eq. (23), it should be clear that we plot the V -
nullcline simply by plotting the function W = V −V 3/3.

Similarly, the W -nullcline is defined as the locus
of points for which g(V, W ), the right-hand side of
Eq. (24), is zero. From the form of the right-hand
side of Eq. (24), the W -nullcline is given by the func-
tion, W = (V + β)/γ. The V and W -nullclines for the
Fitzhugh-Nagumo equations are shown in Fig. 1.

At every point where the two nullclines intersect (see
Fig. 1), both dV/dt and dW/dt are zero. This means
that neither V nor W can change if the system is started
at one of these points, so the system will stay at these
points forever. These points are therefore called fixed
points. For the Fitzhugh-Nagumo equations, there is
only one fixed point located at approximately (V, W ) =
(−1.2,−0.62).

The next step is to consider the stability of these fixed
points. The question to be answered here is, if the sys-
tem is started not at the fixed point, which we will refer
to as (V0, W0), but is instead started very close to the
fixed point, will the system move toward the fixed point,
or will it try to escape? The set of points which tend to
approach the fixed point is called the attractive basin of
the fixed point. We can then restate the question like
this: does the attractive basin completely surround the
fixed point? If so, the fixed point is referred to as stable;
otherwise it is unstable. The attractive basin must com-
pletely surround the fixed point; otherwise we would be
able to find a point arbitrarily close to the fixed point
which is not “attracted” to the fixed point.

There is a simple way to determine the stability of
a fixed point which works for any number of system
equations. We start by linearizing the equations around
the fixed point. For our present two-equation example,
(Eqs. (23) and (24)), linearizing around (V0, W0) yields,

dV

dt
= f(V0 , W0) +

∂f

∂V
(V0, W0) (V − V0)

+
∂f

∂W
(V0, W0) (W − W0) (25)

dW

dt
= g(V0 , W0) +

∂g

∂V
(V0, W0) (V − V0)

+
∂g

∂W
(V0, W0) (W − W0) (26)

In this expression, f(V0, W0) and g(V0, W0) are of course,
zero, since that’s how V0 and W0 were defined. Let’s
define δV ≡ V − V0, and δW ≡ W − W0 to be, respec-
tively, the displacements of V and W away from the
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Figure 2. A few selected trajectories close to and
around the fixed point of the Fitzhugh-Nagumo equa-
tions. The arrows show the direction of flow.

fixed point. The vector (δV, δW ) is called the perturba-
tion of V and W around the fixed point (V0, W0). Now,
dV/dt = d(δV )/dt since V0 is a constant, and similarly
for dW/dt, so Eqs. (25) and (26) become,

dδV

dt
=

∂f

∂V
(V0, W0) δV +

∂f

∂W
(V0, W0) δW (27)

dδW

dt
=

∂g

∂V
(V0, W0) δV +

∂g

∂W
(V0, W0) δW (28)

These two equations thus describe the evolution of per-
turbation of (V, W ) around the fixed point. We can also
write these equations in matrix form:

dδV
dt

= M · δV (29)

where

M =




∂f

∂V
(V0, W0)

∂f

∂W
(V0, W0)

∂g

∂V
(V0, W0)

∂g

∂W
(V0, W0)


 (30)

and

δV =
[

δV
δW

]
(31)

You may recognize the matrix in Eq. (30) as being the
Jacobian matrix.

Keep in mind that all these linearized equations are
approximations: in the Taylor series for f(V, W ) and
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Figure 3. Illustration of the flow direction across null-
clines, and rough flow direction in the region between
nullclines. The sign of the time-derivatives of V and W
in each region are also indicated.

g(V, W ), we threw away higher order terms in δV in
order to obtain Eqs. (25) and (26). The approximation
is good as long as the magnitude of δV is small; that
is, as long as we stay close to the fixed point.

Notice that Eq. (29) is identical in form to Eq. (11)
which describes a 2-d linear system. What this means
is that, near a fixed point, a nonlinear system behaves,
to a good approximation, like a 2-d linear system! The
displacement δV and the fixed point play, respectively,
the roles of x and the origin in the linear system. And
of course, just as in the linear system, the eigenvalues
and eigenvectors of the Jacobian matrix M completely
characterize the behavior of the trajectories. Again,
all this applies only to the immediate vicinity of the
fixed point. Once you are farther away, the system is
nonlinear, and all bets are off.

As an example, consider the fixed point of the Fitzhugh-
Nagumo equations shown as the intersection of the V -
and W -nullclines in Fig. 1. When the partial derivatives
in Eq. (30) are evaluated at the fixed point (at approxi-
mately (V0, W0) = (−1.2,−0.62)) and the characteristic
equation solved, we find the real parts of both λ1 and
λ2 are negative. The trajectories therefore should be
attracted to this fixed point. This can be verified using
a computer to solve the differential equations. Some of
these trajectories are shown in Fig. 2. Notice that all
nearby trajectories end up falling into the fixed point.
The two trajectories at the bottom of the Figure are not
close enough, however, and continue off to the right.

Returning to our discussion of nullclines, we find that
nullclines can also provide some insight into what tra-
jectories look like away from the fixed points. In our
Fitzhugh-Nagumo example (Eqs. (23) and (24)), each
nullcline divides the phase-plane into two regions, one

V

W
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Figure 4. Typical trajectories and their relation to the
nullclines in the Fitzhugh-Nagumo equations.

above the nullcline and one below it as shown in Fig. 3.
The V -nullcline, for example, divides the phase-plane
into the following two regions: one for which f(V, W ),
and therefore dV/dt, is greater than zero, and for which
dV/dt < 0. You can tell which is which by noting what
happens to f(V, W ) when the (V, W ) is pushed verti-
cally upward from the V -nullcline. W is thus increased
while V is held fixed. This point (V, W ) automati-
cally lies in the region above the V -nullcline, and since
f(V, W ) = 0 on the nullcline, if increasing W decreases
f(V, W ), then we must have dV/dt < 0 above the V
nullcline. Similarly, we also have dV/dt > 0 below the
V -nullcline. In Eq. (23), if ε is positive, the function
f(V, W ) = (1/ε)(V − V 3/3 − W ) does indeed decrease
as W increases. We can also use the W -nullcline in
the same way: in our case g(V, W ) = ε(V − γW + β)
decreases as W increases (for positive ε and γ), so
dW/dt < 0 above the W -nullcline, and dW/dt > 0
below it. The V and W nullclines together divide
the phase-plane into four regions, each with a differ-
ent set of signs for dV/dt and dW/dt. For example,
the lower-right region, being below both nullclines, has
both dV/dt > 0 and dW/dt > 0. From this, we know
that all trajectories in this region have to be moving up
and to the right, as indicated by the big arrow in Fig. 3.
You can also often get some additional help by studying
your functions f(V, W ) and g(V, W ) carefully. For our
example, we note that the size of f(V, W ) and g(V, W )
differ quite substantially from one another. Since for the
default parameters for our example, ε = 0.2, f(V, W ),
being proportional to 1/ε, is typically quite large for any
point (V, W ) some respectable distance away from the
V -nullcline, while g(V, W ), and therefore dW/dt, being
proportional to ε, are typically quite small. This means
that we expect to see all of our trajectories nearly hor-
izontal anywhere away from the V -nullcline, as shown
in Fig. 4.
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The other bit of information the nullclines can give
us has to do with what the trajectories are doing as
they cross over the nullclines. By using the fact that
the dV/dt = 0 is zero on the V -nullcline, it is clear that
whatever trajectories cross the V -nullcline must cross
it exactly vertically, as shown in Fig. 3. You can tell
whether trajectories cross from the bottom up or top-
down from the sign of dW/dt at the point of crossing,
which in turn depends on what side of the W -nullcline
your crossing occurs. Similarly, the trajectories must
cross the W -nullcline horizontally.

All this information goes a long way towards con-
structing solutions to your system of differential equa-
tions, all without the use of a computer. For the
Fitzhugh-Nagumo equations, it is possible to reproduce
all the important features of both V and W as functions
of time. While you won’t always be this successful, you
can see the benefits of using nullclines for both check-
ing and, more importantly, explaining your computer
solution.

One of the features which is well-explained by this
nullcline method is the existence of a threshold firing
voltage in the Fitzhugh-Nagumo equations. It should
be clear that the increasing portion of the V -nullcline
plays an important role. As is evident in Fig. 4, if the
system is started with initial conditions V and W such
that the point (V, W ) lies just to the right of this portion
of the V -nullcline, we can see from the above arguments
that the trajectory will track quite rapidly to the right
until the decreasing portion of the V -nullcline is crossed.
The trajectories in this new region must move up and
to the left, so the system point is forced to hug the
V -nullcline and move slowly upward and leftward. At
the maximum of the V -nullcline, the system point “falls
off” the nullcline and moves rapidly leftward. It then
crosses the other decreasing segment of the V nullcline
and moves slowly back towards the fixed point. If, on
the other hand, the system is started with (V, W ) just
to the left of the increasing portion of the V -nullcline,
the behavior is quite different—the system point moves
immediately to the left, and eventually returns to the
fixed point. No firing occurs. We see that the increasing
segment of the V -nullcline is the voltage threshold. We
also note that V increases along this segment as W in-
creases; that is, the threshold voltage increases as W in-
creases. Here is another feature we are able to discover
through the use of nullclines. Since W increases imme-
diately after the system fires, this increase in threshold
with increasing W means that the system has a higher
firing threshold immediately after firing. This is a fea-
ture typical of both cardiac and nerve cells and reflects

the so-called refractory nature of cells which have just
fired.

So far we have seen a number of features often
present in dynamical systems. These include fixed
points, both stable and unstable, and excitable (i.e.,
firing) behavior. Another common feature is the limit
cycle, which is a trajectory which closes on itself. In
essence, a limit cycle is a ring-shaped trajectory. A
system which exhibits limit cycle behavior is called a
cyclical system. Heart pacemaker cells, such as those
located in the sinus node, are examples of cyclical sys-
tems.

Like fixed points, limit cycles can be either stable
or unstable. If points nearby the limit cycle tend to
approach the limit cycle, circling around and around in
the phase plane, coming closer and closer to the limit
cycle, then the limit cycle is stable. If nearby points
tend to spiral away, the limit cycle is unstable.

The ability of fixed points and limit cycles to attract
neighboring trajectories to themselves has led them to
be called attractors. You might ask whether there are
other types of attractors other than fixed points and
limit cycles. In fact, there are. They are called strange
attractors, a term which is well deserved. The are typ-
cially quite bizarre objects and are often chaotic.


