
 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

Exercises

8.14 Hysteresis algorithms.1 2 (Complexity, Com-
putation) ©4

As computers increase in speed and memory, the
benefits of writing efficient code become greater
and greater. Consider a problem on a system of
size N ; a complex algorithm will typically run more
slowly than a simple one for small N , but if its time
used scales proportional to N and the simple algo-
rithm scales as N2, the added complexity wins as
we can tackle larger, more ambitious questions.

+4.0
+0.9
−1.1

−19.9

4

6
3
8

7

2
9
5

+14.9 1

0

Sorted list

1
2

3,48

2 3

5 6

97

4

h i Spin #
Lattice

= 1.1H

1

−1.4
−2.5
−6.6

+5.5

Fig. 8.19 Using a sorted list to find the next spin
in an avalanche. The shaded cells have already flipped.
In the sorted list, the arrows on the right indicate the
nextPossible[nUp] pointers—the first spin that would
not flip with nUp neighbors at the current external field.
Some pointers point to spins that have already flipped,
meaning that these spins already have more neighbors
up than the corresponding nUp. (In a larger system the
unflipped spins will not all be contiguous in the list.)

In the hysteresis model (Exercise 8.13), the brute-
force algorithm for finding the next avalanche for a
system with N spins takes a time of order N per
avalanche. Since there are roughly N avalanches (a

large fraction of all avalanches are of size one, espe-
cially in three dimensions) the time for the brute-
force algorithm scales as N2. Can we find a method
which does not look through the whole lattice every
time an avalanche needs to start?

We can do so using the sorted list algorithm: we
make3 a list of the spins in order of their random
fields (Fig. 8.19). Given a field range (H, H +∆) in
a lattice with z neighbors per site, only those spins
with random fields in the range JS + H < −hi <

JS +(H + δ) need to be checked, for the z +1 pos-
sible fields JS = (−Jz,−J(z−2), . . . , Jz) from the
neighbors. We can keep track of the locations in the
sorted list of the z + 1 possible next spins to flip.
The spins can be sorted in time N log N , which is
practically indistinguishable from linear in N , and
a big improvement over the brute-force algorithm.

Sorted list algorithm.

(1) Define an array nextPossible[nUp], which
points to the location in the sorted list of
the next spin that would flip if it had nUp

neighbors. Initially, all the elements of
nextPossible[nUp] point to the spin with the
largest random field hi.

(2) From the z + 1 spins pointed to by
nextPossible, choose the one nUpNext with
the largest internal field in nUp - nDown + hi =
2 nUp - z + hi. Do not check values of nUp for
which the pointer has fallen off the end of the
list; use a variable stopNUP.

(3) Move the pointer nextPossible[nUpNext] to
the next spin on the sorted list. If you
have fallen off the end of the list, decrement
stopNUP.4

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 185. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise is also largely drawn from [69], and was developed with the associated
software in collaboration with Christopher Myers.
3Make sure you use a packaged routine to sort the list; it is the slowest part of the
code. It is straightforward to write your own routine to sort lists of numbers, but
not to do it efficiently for large lists.
4Either this spin is flipped (move to the next), or it will start the next avalanche (flip

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

2

(4) If the spin nUpNext has exactly the right num-
ber of up-neighbors, flip it, increment the ex-
ternal field H(t), and start the next avalanche.
Otherwise go back to step (2).

Implement the sorted list algorithm for finding the
next avalanche. Notice the pause at the begin-
ning of the simulation; most of the computer time
ought to be spent sorting the list. Compare the
timing with your brute-force algorithm for a mod-
erate system size, where the brute-force algorithm

is slightly painful to run. Run some fairly large
systems5 (20002 at R = (0.7, 0.8, 0.9) or 2003 at
R = (2.0, 2.16, 3.0)), and explore the avalanche
shapes and size distribution.

To do really large simulations of billions of spins
without needing gigabytes of memory, there is yet
another algorithm we call bits, which stores the
spins as bits and never generates or stores the ran-
dom fields (see [69] for implementation details).

and move to the next), or it has too few spins to flip (move to the next, flip it when
it has more neighbors up).
5Warning: You are likely to run out of RAM before you run out of patience. If you
hear your disk start swapping (lots of clicking noise), run a smaller system size.

	Exercises
	Hysteresis algorithms

