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Exercises

8.13 Hysteresis and avalanches.1 2 (Complexity,
Computation) ©4

A piece of magnetic material exposed to an increas-
ing external field H(t) (Fig. 8.14) will magnetize
(Fig. 8.15) in a series of sharp jumps, or avalanches
(Fig. 8.16). These avalanches arise as magnetic do-
main walls in the material are pushed by the exter-
nal field through a rugged potential energy land-
scape due to irregularities and impurities in the
magnet. The magnetic signal resulting from these
random avalanches is called Barkhausen noise.

We model this system with a non-equilibrium lat-
tice model, the random field Ising model. The
Hamiltonian or energy function for our system is

H = −
∑

〈i,j〉

Jsisj −
∑

i

(

H(t) + hi

)

si, (8.27)

where the spins si = ±1 lie on a square or cu-
bic lattice with periodic boundary conditions. The
coupling and the external field H are as in the tra-
ditional Ising model (Section 8.1). The disorder
in the magnet is incorporated using the random
field hi, which is independently chosen at each lat-
tice site from a Gaussian probability distribution
of standard deviation R:

P (h) =
1√
2πR

e−h2/2R2

. (8.28)

We are not interested in thermal equilibrium; there
would be no hysteresis! We take the opposite ex-
treme; we set the temperature to zero. We start
with all spins pointing down, and adiabatically (in-
finitely slowly) increase H(t) from −∞ to ∞.
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Fig. 8.14 Barkhausen noise experiment. By in-
creasing an external magnetic field H(t) (bar magnet
approaching), the magnetic domains in a slab of iron
flip over to align with the external field. The resulting
magnetic field jumps can be turned into an electrical sig-
nal with an inductive coil, and then listened to with an
ordinary loudspeaker. Barkhausen noise from our com-
puter experiments can be heard on the Internet [68].

Our rules for evolving the spin configuration are
simple: each spin flips over when doing so would
decrease the energy. This occurs at site i when the
local field at that site

J
∑

j nbr to i

sj + hi + H(t) (1)

changes from negative to positive. A spin can be
pushed over in two ways. It can be triggered when
one of its neighbors flips (by participating in a prop-
agating avalanche) or it can be triggered by the
slow increase of the external field (starting a new
avalanche).

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 182. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise is largely drawn from [69]. It and the associated software were devel-
oped in collaboration with Christopher Myers.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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Fig. 8.15 Hysteresis loop with subloops for our
model. As the external field is raised and lowered (ver-
tical), the magnetization lags behind—this is called hys-

teresis. The magnetization curves here look macroscop-
ically smooth.

We will provide hints files and graphics routines for
different languages and systems on the computer
exercises portion of the book web site [129].

Fig. 8.16 Tiny jumps: Barkhausen noise. Blow-
ing up a small portion of Fig. 8.15, we see that the
magnetization is growing in a series of sharp jumps, or
avalanches.

(a) Set up lattices s[m][n] and h[m][n] on the
computer. (If you do three dimensions, add an ex-
tra index to the arrays.) Fill the former with down-
spins (−1) and the latter with random fields (real
numbers chosen from the distribution 8.28). Write
a routine FlipSpin for the lattice, which given i

and j flips the spin from s = −1 to s = +1 (com-
plaining if it is already flipped). Write a routine
NeighborsUp which calculates the number of up-
neighbors for the spin (implementing the periodic
boundary conditions).

On the computer, changing the external field in-
finitely slowly is easy. To start a new avalanche (or
the first avalanche), one searches for the unflipped
spin that is next to flip, jumps the field H to just

enough to flip it, and propagates the avalanche, as
follows.

Lattice

12 12 15 15 19 19 7
6 10

20 6
3 5

7 8 9

13

1 2 4

15

2019

14

181716

11 12

2421 22 23 25

11 17 10 20 18

End of shell

Queue

Fig. 8.17 Avalanche propagation in the hystere-

sis model. Left: a propagating avalanche. Spin 13
triggered the avalanche. It triggered the first shell of
spins 14, 8, and 12, which then triggered the second
shell 15, 19, 7, 11, and 17, and finally the third shell
10, 20, 18, and 6. Right: the first-in–first-out queue,
part way through flipping the second shell. (The num-
bers underneath are the triggering spins for the spins
on the queue, for your convenience.) The spin at the
left of this queue is next to flip. Notice that spin 20 has
been placed on the queue twice (two neighbors in the
previous shell). By placing a marker at the end of each
shell in the queue, we can measure the number of spins
flipping per unit ‘time’ during an avalanche (Fig. 8.18).

Propagating an avalanche

(1) Find the triggering spin i for the next
avalanche, which is the unflipped site with the
largest internal field J

∑

j nbr to i sj + hi from
its random field and neighbors.

(2) Increment the external field H to minus this
internal field, and push the spin onto a first-
in–first-out queue (Fig. 8.17, right).

(3) Pop the top spin off the queue.

(4) If the spin has not been flipped,3 flip it and
push all unflipped neighbors with positive lo-
cal fields onto the queue.

(5) While there are spins on the queue, repeat from
step (3).

(6) Repeat from step (1) until all the spins are
flipped.

(b) Write a routine BruteForceNextAvalanche for
step (1), which checks the local fields of all of the
unflipped spins, and returns the location of the next
to flip.

3You need to check if the spin is flipped again after popping it off the queue; spins
can be put onto the queue more than once during an avalanche (Fig. 8.17).
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Exercises 3

(c) Write a routine PropagateAvalanche that prop-
agates an avalanche given the triggering spin,
steps (3)–(5), coloring the spins in the display that
are flipped. Run a 300 × 300 system at R = 1.4,
0.9, and 0.7 (or a 503 system at R = 4, R = 2.16,
and R = 2) and display the avalanches. If you
have a fast machine, you can run a larger size sys-
tem, but do not overdo it; the sorted list algorithm
below will dramatically speed up the simulation.
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Fig. 8.18 Avalanche time series. Number of do-
mains flipped per time step for the avalanche shown in
Fig. 12.5. Notice how the avalanche almost stops several
times; if the forcing were slightly smaller compared to
the disorder, the avalanche would have separated into
smaller ones. The fact that the disorder is just small

enough to keep the avalanche growing is the criterion for
the phase transition, and the cause of the self-similarity.
At the critical point, a partial avalanche of size S will
on average trigger another one of size S.

There are lots of properties that one might wish
to measure about this system: avalanche sizes,
avalanche correlation functions, hysteresis loop
shapes, average pulse shapes during avalanches, . . .
It can get ugly if you put all of these measurements
inside the inner loop of your code. Instead, we sug-
gest that you try the subject–observer design pat-
tern: each time a spin is flipped, and each time an
avalanche is finished, the subject (our simulation)
notifies the list of observers.

(d) Build a MagnetizationObserver, which stores
an internal magnetization starting at −N , adding
two to it whenever it is notified. Build an
AvalancheSizeObserver, which keeps track of the
growing size of the current avalanche after each
spin flip, and adds the final size to a histogram of all
previous avalanche sizes when the avalanche ends.
Set up NotifySpinFlip and NotifyAvalancheEnd

routines for your simulation, and add the two
observers appropriately. Plot the magnetization
curve M(H) and the avalanche size distribution
histogram D(S) for the three systems you ran for
part (c).
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