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Exercises

12.13 Hysteresis and avalanches: scaling.1 (Com-
plexity) ©3

For this exercise, either download Matt Kuntz’s
hysteresis simulation code from the book web
site [129], or make use of the software you devel-
oped in Exercise 8.13 or 8.14.

Run the simulation in two dimensions on a 1000 ×
1000 lattice with disorder R = 0.9, or a three-
dimensional simulation on a 1003 lattice at R =
2.16.2 The simulation is a simplified model of mag-
netic hysteresis, described in [128]; see also [127].
The spins si begin all pointing down, and flip up-
ward as the external field H grows from minus in-
finity, depending on the spins of their neighbors and
a local random field hi. The flipped spins are col-
ored as they flip, with spins in the same avalanche
sharing the same color. An avalanche is a collec-
tion of spins which flip together, all triggered from
the same original spin. The disorder is the ratio R
of the root-mean-square width

√

〈h2
i 〉 to the ferro-

magnetic coupling J between spins:

R =
√

〈h2〉/J. (1)

Examine the M(H) curve for our model and the
dM/dH curve. The individual avalanches should
be visible on the first graph as jumps, and on the
second graph as spikes. This kind of time series
(a set of spikes or pulses with a broad range of
sizes) we hear as crackling noise. You can go to our
site [68] to hear the noise resulting from our model,
as well as crackling noise we have assembled from
crumpling paper, from fires and Rice KrispiesTM,
and from the Earth (earthquakes in 1995, sped up
to audio frequencies).

Examine the avalanche size distribution. The (un-
labeled) vertical axis on the log–log plot gives the
number of avalanches D(S, R); the horizontal axis
gives the size S (with S = 1 on the left-hand side).

Equivalently, D(S, R) is the probability distribu-
tion that a given avalanche during the simulation
will have size S. The graph is created as a his-
togram, and the curve changes color after the first
bin with zero entries (after which the data becomes
much less useful, and should be ignored).

If available, examine the spin–spin correlation func-
tion C(x,R). It shows a log–log plot of the proba-
bility (vertical axis) that an avalanche initiated at a
point x0 will extend to include a spin x1 a distance
x =

√

(x1 − x0)2 away.

Two dimensions is fun to watch, but the scaling
behavior is not yet understood. In three dimen-
sions we have good evidence for scaling and criti-
cality at a phase transition in the dynamical evolu-
tion. There is a phase transition in the dynamics at
Rc ∼ 2.16 on the three-dimensional cubic lattice.
Well below Rc one large avalanche flips most of the
spins. Well above Rc all avalanches are fairly small;
at very high disorder each spin flips individually.
The critical disorder is the point, as L → ∞, where
one first finds spanning avalanches, which extend
from one side of the simulation to the other.

Simulate a 3D system at R = Rc = 2.16 with
L = 100 (one million spins, or larger, if you have a
fast machine). It will be fastest if you use the sorted
list algorithm (Exercise 8.14). The display will
show an L × L cross-section of the 3D avalanches.
Notice that there are many tiny avalanches, and a
few large ones. Below Rc you will find one large col-
ored region forming the background for the others;
this is the spanning, or infinite avalanche. Look
at the M(H) curve (the bottom half of the hys-
teresis loop). It has many small vertical jumps
(avalanches), and one large one (corresponding to
the spanning avalanche).

(a) What fraction of the system is flipped by the
one largest avalanche, in your simulation? Com-
pare this with the hysteresis curve at R = 2.4 > Rc.

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 296. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2If you are using the brute-force algorithm, you are likely to need to run all of the
three-dimensional simulations at a smaller system size, perhaps 503 . If you have a
fast computer, you may wish to run at a larger size, but make sure it is not tedious
to watch.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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Does it have a similar big jump, or is it continu-
ous?

Below Rc we get a big jump; above Rc all
avalanches are small compared to the system size.
If the system size were large enough, we believe the
fraction of spins flipped by the spanning avalanche
at Rc would go to zero. The largest avalanche
would nonetheless span the system—just like the
percolation cluster at pc spans the system but oc-
cupies zero volume in the limit of large systems.

The other avalanches form a nice power-law size
distribution; let us measure it carefully. Do a set
of 10 runs (# Runs 10) at L = 100 and R = Rc =
2.16.3

Watch the avalanches. Notice that sometimes the
second-largest avalanche in the view (the largest
being the ‘background color’) is sometimes pretty
small; this is often because the cross-section we
view missed it. Look at the avalanche size distri-
bution. (You can watch it as it averages over sim-
ulations.) Print it out when the simulations finish.
Notice that at Rc you find a pretty good power-law
distribution (a straight line on the log–log plot).
We denote this critical exponent τ̄ = τ + σβδ:

D(S, Rc) ∼ S−τ̄ = S−(τ+σβδ). (2)

(b) From your plot, measure this exponent combi-
nation from your simulation. It should be close to
two. Is your estimate larger or smaller than two?

This power-law distribution is to magnets what the
Gutenberg–Richter law (Fig. 12.3(b)) is to earth-
quakes. The power law stems naturally from the
self-similarity.

We want to explore how the avalanche size distri-
bution changes as we move above Rc. We will do
a series of three or four runs at different values of
R, and then graph the avalanche size distributions
after various transformations.

Do a run at R = 6 and R = 4 with L = 100, and
make sure your data files are properly output. Do
runs at R = 3, R = 2.5, and R = 2.16 at L = 200.

(c) Copy and edit your avalanche size distribution
files, removing the data after the first bin with zero
avalanches in it. Start up a graphics program, and
plot the curves on a log–log plot; they should look
like power laws for small S, and cut off exponen-
tially at larger S. Enclose a copy of your plot.

We expect the avalanche size distribution to have
the scaling form

D(S, R) = S−(τ+σβδ)D(S(R − Rc)
1/σ) (12.65)

sufficiently close to Rc. This reflects the similarity
of the system to itself at a different set of param-
eters; a system at 2(R − Rc) has the same distri-
bution as a system at R −Rc except for an overall
change A in probability and B in the size scale of
the avalanches, so D(S, R − Rc) ≈ AD(BS, 2(R −
Rc)).

(d) What are A and B in this equation for the scal-
ing form given by eqn 12.65?

At R = 4 and 6 we should expect substantial cor-
rections! Let us see how well the collapse works
anyhow.

(e) Multiply the vertical axis of each curve by
Sτ+σβδ. This then should give four curves D(S(R−
Rc)

1/σ) which are (on a log–log plot) roughly
the same shape, just shifted sideways horizontally
(rescaled in S by the typical largest avalanche size,
proportional to 1/(R − Rc)

1/σ). Measure the peak
of each curve. Make a table with columns R, Speak,
and R − Rc (with Rc ∼ 2.16). Do a log–log plot of
R−Rc versus Speak, and estimate σ in the expected
power law Speak ∼ (R − Rc)

−1/σ.

(f) Do a scaling collapse: plot Sτ+σβδD(S, R) ver-
sus (R − Rc)

1/σ S for the avalanche size distribu-
tions with R > Rc. How well do they collapse onto
a single curve?

The collapses become compelling only near Rc,
where you need very large systems to get good
curves.

3If your machine is slow, do fewer. If your machine is fast, use a larger system.
Make sure you do not run out of RAM, though (lots of noise from your hard disk
swapping); if you do, shift to the bits algorithm if its available. Bits will use much
less memory for large simulations, and will start up faster than sorted list, but it
will take a long time searching for the last few spins. Both are much faster than the
brute-force method.
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