Exercises

8.1 The Ising model. ${ }^{1}$ (Computation) (1)

You will need a two-dimensional square-lattice Ising model simulation, one of which is available among the computational exercises section on the book web site [129]. The Ising Hamiltonian is (eqn 8.1):

$$
\begin{equation*}
\mathcal{H}=-J \sum_{\langle i j\rangle} S_{i} S_{j}-H \sum_{i} S_{i}, \tag{1}
\end{equation*}
$$

where $S_{i}= \pm 1$ are 'spins' on a square lattice, and the sum $\sum_{\langle i j\rangle}$ is over the four nearest-neighbor bonds (each pair summed once). It is conventional to set the coupling strength $J=1$ and Boltzmann's constant $k_{B}=1$, which amounts to measuring energies and temperatures in units of J. The constant H is called the external field, and $\mathbf{M}=\sum_{i} S_{i}$ is called the magnetization. Our simulation does not conserve the number of spins up, so it is not a nat-
ural simulation for a binary alloy. You can think of it as a grand canonical ensemble, or as a model for extra atoms on a surface exchanging with the vapor above.
Play with the simulation. At high temperatures, the spins should not be strongly correlated. At low temperatures the spins should align all parallel, giving a large magnetization.
Roughly locate T_{c}, the largest temperature where distant spins remain parallel on average at $T=0$. Explore the behavior by gradually lowering the temperature from just above T_{c} to just below T_{c}; does the behavior gradually change, or jump abruptly (like water freezing to ice)? Explore the behavior at $T=2$ (below T_{c}) as you vary the external field $H= \pm 0.1$ up and down through the 'phase boundary' at $H=0$ (Fig. 8.5). Does the behavior vary smoothly in that case?
${ }^{1}$ From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James P. Sethna, copyright Oxford University Press, 2007, page 174. A pdf of the text is available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the text). Hyperlinks from this exercise into the text will work if the latter PDF is downloaded into the same directory/folder as this PDF.

