Statistical mechanics: Ising Model Physics 682 / CIS 629: Computational Methods for Nonlinear Systems

- Statistical mechanics: probability $\rho(\mathbf{S})$ to be in state \mathbf{S}
- Ising model: simple model of magnetic systems
 - $S = {S_i}$, sites i on a (square) lattice, i = (x,y)
 - Spins $S_i = \pm 1$
- Equilibrium statistical mechanics:
 - Energy E(S)
 - Boltzmann probability distribution: $\rho(S) \sim \exp(-E(S)/k_BT)$
 - High temperatures: states have equal weight
 - Low temperatures: low-energy states predominate
- Ising model: $E(S) = -J \Sigma_{\langle i,j \rangle} S_i S_j H \Sigma_i S_i$
 - lowest energy state (J > 0), all spins up (+1) or down (-1)
 - Broken symmetry ferromagnetic phase
 - High temperature paramagnetic phase
 - Transition at T_c: fluctuations on all scales

- Markov chain
 - dynamics for statistical models
 - transition rate P_{S'S} from S to S'
 - Markovian: independent of history
- Markov chain properties
 - detailed balance: equilibrium flux $S \rightarrow S' = \text{flux } S' \rightarrow S \Rightarrow P_{S'S} \cdot \rho(S) = P_{SS'} \cdot \rho(S')$
 - ergodic: every state can be reached
 - A Markovian model that is ergodic and satisfies detailed balance will eventually approach equilibrium.
- Ising model dynamics
 - Heat bath Monte Carlo
 - pick a spin at random, measure flip ΔE
 - equilibrate to its current environment:
 - up with prob. $e^{-\beta E_+}/(e^{-\beta E_+} + e^{-\beta E_-})$, down with prob. $e^{-\beta E_-}/(e^{-\beta E_+} + e^{-\beta E_-})$
 - Metropolis Monte Carlo
 - pick a spin at random, measure flip ΔE
 - if $\Delta E < 0$, execute flip
 - if $\Delta E > 0$, execute flip at some probability $p \sim exp(-\Delta E/k_BT)$
 - Wolff algorithm
 - clever generation of cluster flips
 - much faster dynamics near T_c (avoids critical slowing down)
 - satisfies detailed balance

Some variations on a theme

- Random field Ising model
 - $E(S) = -J \Sigma_{\langle i,j \rangle} S_i S_j \Sigma_i H_i S_i$ (H_i random)
 - interesting behavior even at T=0
 - avalanches on many length and time scales ("crackling noise")
 - phase transition as a function of the strength of the disorder
 - hysteresis & return-point memory
 - see "Hysteresis Exercise" (not in Python)
- Spin glasses
 - $E(S) = -\Sigma_{\langle i,j \rangle} J_{ij} S_i S_j (J_{ij} random)$
 - typically frustrated: cannot find spin assignment that optimally satisfies all interactions
 - rugged energy landscape: many low-energy states with roughly equal energy (and potentially large barriers)
 - replica theory and cavity methods translated to NP-complete problems (e.g., 3SAT) to provide new algorithms

