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Exercises

11.4 Nucleation in the Ising model.1 ©3

The Ising model (Section 8.1) is not only our
archetype for a continuous phase transition; it is
also our best model for nucleation (this exercise)
and for the dynamics of phase separation (Exer-
cise 11.6).

The Ising model can be used to study the nucle-
ation of one phase inside another. Supercooling
water and waiting for an ice crystal nucleus to form
can be shown to be quite analogous to changing a
magnet from external field Hext > 0 to Hext < 0 at
a temperature T < Tc. The analogy with changing
the temperature or pressure of H20 gas and waiting
for a raindrop is even better.

Start up the Ising model simulation, available in
the computer exercises portion of the book web
site [129]. Run at T = 1.5 (below Tc) at size 40×40,
initialized with all spins up. Set Hext = −0.3 and
watch the spins. They should eventually flop over
to point down, with the new phase starting in a
small, roughly circular cluster of spins, which then
grows to fill the system.2

(a) Using the graph of magnetization versus time,
measure the average time it takes to cross zero
(which we will call the time to nucleate the down
phase), averaging over ten measurements. (You
may want to reduce the graphics refresh rate to
speed up the simulation.) Similarly measure the av-
erage time to nucleate the down phase for Hext =
−0.2. Since the nucleation center can be located
at any site on the lattice, the nucleation rate scales
with the number of spins in the system. Calculate,
for both fields, the nucleation rate per spin Γexp(H).

We can use critical droplet theory (Section 11.3) to
estimate the nucleation rate. Small droplets of the
stable phase will shrink due to surface tension σ;
large ones grow due to the free energy difference per
unit area Hext∆M(T ), where ∆M is the magneti-

zation difference between the two states. Presum-
ing that the temperature is high and the droplet
large and the times long (so that continuum the-
ories are applicable), one can estimate the critical
radius Rc for nucleation.

(b) Give the formula for the free energy of a flipped
cluster of radius R as a function of σ, H, and
∆M . Give formulæ for Rc (the critical droplet size
where the free energy is a local maximum), the re-
sulting barrier B to nucleation, and the predicted
rate Γtheory = exp(−B/T ) (assuming a prefactor
of roughly one attempt per sweep per spin). At low
temperatures, σ ∼ 2J ≡ 2 and ∆M ≈ 2, since
the system is almost fully magnetized and σ is the
number of broken bonds (2J each) per unit length
of interface. Make a table with rows for the two
fields you simulated and with columns for H, Rc,
B, Γtheory, and Γexp from (a).

This should work pretty badly. Is the predicted
droplet size large enough (several lattice constants)
so that the continuum theory should be valid?

We can test these ideas better by starting with
droplets of down-spins (white) in an up back-
ground. Use a small system (40×40). You can
make such a droplet by setting the spins up and
then flipping a circular cluster of spins in the cen-
ter. After making the circle, store it for re-use. You
will want to refresh the display each sweep, since
the droplet will grow or shrink rather quickly.

(c) Start with H = −0.2, T = 1.5 and a down-spin
droplet of radius five (diameter of ten), and run ten
times. Does it grow more often than it shrinks, or
vice versa? (Testing this should be fast.) On the
magnetization curve, count the shrinking fraction
f . Make a table of the values of H and f you mea-
sure. Vary the field H until the probabilities roughly
match; find the field for Rc = 5 to within 0.1. For
what field is the theoretical critical droplet radius
Rc = 5 at T = 1.5?

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 253. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2The system has periodic boundary conditions, so a cluster which starts near a
boundary or corner may falsely look like more than one simultaneous nucleation
event.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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In part (b) we found that critical droplet theory
worked badly for predicting the nucleation rate. In
part (c) we found that it worked rather well (within
a factor of two) at predicting the relationship be-
tween the critical droplet size and the external field.
This is mostly because the nucleation rate depends
exponentially on the barrier, so a small error in the
barrier (or critical droplet radius) makes a big er-

ror in the nucleation rate. You will notice that the-
ory papers rarely try to predict rates of reactions.
They will almost always instead compare theoreti-
cal and experimental barrier heights (or here, crit-
ical droplet radii). This avoids embarrassment.

This free energy barrier to nucleation is what al-
lows supercooled liquids and supersaturated vapor
to be stable for long periods.
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